Featured Research

from universities, journals, and other organizations

Recipe for global warming-free industrial materials

Date:
May 3, 2010
Source:
Purdue University
Summary:
A new study offers at least a partial recipe that industrial chemists could use in developing alternatives with less global warming potential than materials commonly used today.

Let a bunch of fluorine atoms get together in the molecules of a chemical compound, and they're like a heavy metal band at a chamber music festival. They tend to dominate the proceedings and not always for the better.

Related Articles


That's particularly true where the global warming potential of the chemicals is concerned, says a new study by NASA and Purdue University researchers.

The study offers at least a partial recipe that industrial chemists could use in developing alternatives with less global warming potential than materials commonly used today. The study was published in the Proceedings of the National Academy of Sciences.

"What we're hoping is that these additional requirements for minimizing global warming will be used by industry as design constraints for making materials that have, perhaps, the most green chemistry," says Joseph Francisco, a Purdue chemistry and earth and atmospheric sciences professor.

The classes of chemicals examined in the study are widely used in air conditioning and the manufacturing of electronics, appliances and carpets. Other uses range from applications as a blood substitute to tracking leaks in natural gas lines.

The chemicals include fluorine atom-containing compounds such as hydrofluorocarbons, perfluorocarbons, hydrofluoroethers, hydrofluoroolefins, and sulfur and nitrogen fluorides.

In a 2009 study, Francisco and NASA collaborators Timothy Lee and Partha Bera examined the molecular qualities that make fluorinated compounds even more powerful warming promoters than chemicals emitted in greater quantities, such as carbon dioxide and methane.

The fluorinated compounds proved to be far more efficient at blocking radiation -- or heat -- in the atmospheric window. The atmospheric window is the frequency range in the infrared region of the electromagnetic spectrum through which radiation from Earth is released into space. This helps cool the planet. When that radiation is trapped instead of being released, a greenhouse effect results, warming the planet.

The new study looked at a broader class of chemicals to identify molecular-level features that make them more or less efficient at trapping radiation in the atmospheric window. The study employed results from atomic-scale quantum chemistry calculations done on computers from NASA and Information Technology at Purdue (ITaP), Purdue's central information technology organization.

"We specifically looked at molecules that we felt would have potential for industrial use as replacements for chlorofluorocarbons," says Francisco, whose research focuses on the chemistry of molecules in the atmosphere.

Among other things, the study looked at how the number and placement of electronegative atoms in a molecule's structure affects its radiative efficiency. The number and placement of fluorine atoms proved to be a key factor because they're very electronegative and form highly polar bonds with carbon and sulfur.

Fluorine atoms thus tend to change the bond-polarity of the molecules -- modifying the bonds holding the atoms in the structure. This, in turn, affects how a molecule will absorb infrared radiation that normally passes through Earth's atmosphere and into space.

"The polarity change is what makes for an efficient absorber of infrared radiation," says Lee, chief of the Space Science and Astrobiology Division at NASA Ames Research Center.One message from the study: Avoid allowing fluorines to bunch up in a molecular structure. "In other words, don't put them all on one atom," Francisco says. "Spread them out."

The fluorinated compounds also persist longer in the atmosphere than carbon dioxide and other major global warming agents, Lee and Francisco note. Even if emitted in lower quantities, fluorine-containing chemicals might have a powerful cumulative effect. Some don't break down for thousands of years.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Greg Kline,, science and technology writer, Information Technology at Purdue (ITaP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Partha P. Bera, Joseph S. Francisco, Timothy J. Lee. Design strategies to minimize the radiative efficiency of global warming molecules. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.0913590107

Cite This Page:

Purdue University. "Recipe for global warming-free industrial materials." ScienceDaily. ScienceDaily, 3 May 2010. <www.sciencedaily.com/releases/2010/05/100503161514.htm>.
Purdue University. (2010, May 3). Recipe for global warming-free industrial materials. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/05/100503161514.htm
Purdue University. "Recipe for global warming-free industrial materials." ScienceDaily. www.sciencedaily.com/releases/2010/05/100503161514.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins