Featured Research

from universities, journals, and other organizations

Invention regulates nerve cells electronically

Date:
May 22, 2010
Source:
Expertanswer (Expertsvar in Swedish)
Summary:
A major step toward being able to regulate nerve cells externally with the help of electronics has been taken by researchers in Sweden. The breakthrough is based on an ion transistor of plastic that can transport ions and charged biomolecules and thereby address and regulate cells.

Artist's concept of nerve cell signals.
Credit: iStockphoto

A major step toward being able to regulate nerve cells externally with the help of electronics has been taken by researchers at Linköping University and the Karolinska Institute in Sweden. The breakthrough is based on an ion transistor of plastic that can transport ions and charged biomolecules and thereby address and regulate cells.

The invention, which opens new avenues for controlling chemical signals, is being published in the coming issue of the scientific journal Proceedings of the National Academy of Sciences. The authors are Klas Tybrandt and Magnus Berggren of Linköping University, who developed the invention, and Karin Larsson and Agneta Richter-Dahlfors at the Karolinska Institute, who have used it in experiments with cultivated nerve cells.

The four scientists work at the OBOE Research Center, which is dedicated to the study and regulation of processes in living cells and tissue through the use of organic electronics.

Previously use has been made of nano-canals and nano-pores to actively control the concentration and transport of ions. But such components are difficult to produce and moreover function poorly when the salt content is high, which is a precondition in interaction with biological systems.

"To get around these problems, we exploited the similarity between ion-selective membranes -- plastics that only conduct ions of one charge -- and doped semiconductors, such as silicon. It was previously known that it is possible to produce diodes from such membranes. We took it a step further by joining two ion diodes into a transistor," says Klas Tybrandt, a doctoral candidate in organic electronics.

When an ion transistor was connected to cultivated nerve cells, it could be used to control the supply of the signal substance acetylcholin locally to the cells. The successful result demonstrates both that the component functions together with biological systems and that even tiny charged biomolecules can be transported without difficulty.

"Since the ion transistor is made of plastic, it can be integrated with other components we are developing. This means we can make use of inexpensive printing processes on flexible materials. We believe ion transistors will play a major role in various applications, such as the controlled delivery of drugs, lab-on-a-chip and sensors," says Magnus Berggren, Önnesjö professor of organic electronics.

The research center OBOE (organic bioelectronics) is funded by the Foundation for Strategic Research.


Story Source:

The above story is based on materials provided by Expertanswer (Expertsvar in Swedish). Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Tybrandt, K. C. Larsson, A. Richter-Dahlfors, M. Berggren. Ion bipolar junction transistors. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.0913911107

Cite This Page:

Expertanswer (Expertsvar in Swedish). "Invention regulates nerve cells electronically." ScienceDaily. ScienceDaily, 22 May 2010. <www.sciencedaily.com/releases/2010/05/100521191111.htm>.
Expertanswer (Expertsvar in Swedish). (2010, May 22). Invention regulates nerve cells electronically. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2010/05/100521191111.htm
Expertanswer (Expertsvar in Swedish). "Invention regulates nerve cells electronically." ScienceDaily. www.sciencedaily.com/releases/2010/05/100521191111.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) — Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) — New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins