Featured Research

from universities, journals, and other organizations

Systems biology helps explain hematopoiesis

Date:
May 24, 2010
Source:
Helmholtz Association of German Research Centres
Summary:
After blood loss, large amounts of the hormone Epo flood the hematopoietic system in the bone marrow. Scientists have shown how a rapid turnover of Epo receptor molecules on hematopoietic cells ensures that these remain ready to react. Thus, our body can respond even to extreme increases of Epo levels with an adequate supply of red blood cells.

After blood loss, large amounts of the hormone Epo flood the hematopoietic system in the bone marrow. Scientists have shown how a rapid turnover of Epo receptor molecules on hematopoietic cells ensures that these remain ready to react.  Thus, our body can respond even to extreme increases of Epo levels with an adequate supply of red blood cells.

Related Articles


Our body reacts to blood loss by stimulating the production of red blood cells (erythrocytes). The cells of the hematopoietic (blood-forming) system in the bone marrow do so upon receipt of a signal by a hormone called erythropoietin, or Epo for short. This hormone is produced mainly by the kidney that increases the Epo level by up to a thousand-fold as a response to falling oxygen saturation of the blood.

The hematopoietic cells receive the Epo signal through Epo receptors on their surface. How do the blood progenitor cells that carry only few receptor molecules manage to react adequately to a high rise in the Epo level and to always provide the required amount of red blood cells? "If too much of the hormone floods too few receptor molecules, we would expect the saturation point to be reached soon. This would mean that the hematopoietic cell can no longer respond to a further increase in the hormone level," says Dr. Ursula Klingmüller of DKFZ.

Researchers in her department, who participate in the Helmholtz Alliance for Systems Biology and the MedSys Network LungSys funded by the Federal Ministry of Education and Research (BMBF), collaborated with colleagues of a working group headed by Professor Jens Timmer at Freiburg University to find out how hematopoietic cells can react in a linear way if Epo levels increase by several orders of magnitude. To do so, the researchers combined experimental data with mathematical models in a systems biology approach.

The research team was able to show that after binding of Epo to its receptor both molecules are rapidly taken up into the interior of the hematopoietic cells where they are broken down. During the process, the cell surface is continuously equipped with newly synthesized receptor molecules that are supplied from intracellular storage places. "This turnover of receptor molecules is a very rapid process," Jens Timmer explains who is a member of the Freiburg Institute for Advances Studies (FRIAS) as well as the excellence cluster BIOSS. "Thus, the cell keeps being able to recognize further hormone molecules in its environment and to react accordingly."

Genetically engineered Epo is an important medication for treating anemia, for example in dialysis patients who often suffer from low counts of red blood cells because these are destroyed during dialysis and, in addition, the failure of renal function leads to a lack of natural Epo. The results of the Heidelberg and Freiburg scientists may contribute to developing Epo variants with enhanced binding properties and thus increase the effectiveness of anemia treatment.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. Becker, M. Schilling, J. Bachmann, U. Baumann, A. Raue, T. Maiwald, J. Timmer, U. Klingmuller. Covering a Broad Dynamic Range: Information Processing at the Erythropoietin Receptor. Science, 2010; DOI: 10.1126/science.1184913

Cite This Page:

Helmholtz Association of German Research Centres. "Systems biology helps explain hematopoiesis." ScienceDaily. ScienceDaily, 24 May 2010. <www.sciencedaily.com/releases/2010/05/100521191434.htm>.
Helmholtz Association of German Research Centres. (2010, May 24). Systems biology helps explain hematopoiesis. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/05/100521191434.htm
Helmholtz Association of German Research Centres. "Systems biology helps explain hematopoiesis." ScienceDaily. www.sciencedaily.com/releases/2010/05/100521191434.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins