Featured Research

from universities, journals, and other organizations

Gene related to aging plays role in stem cell differentiation

Date:
June 5, 2010
Source:
Thomas Jefferson University
Summary:
A gene shown to play a role in the aging process appears to play a role in the regulation of the differentiation of embryonic stem cells, according to new research.

A gene shown to play a role in the aging process appears to play a role in the regulation of the differentiation of embryonic stem cells, according to researchers from the Center for Stem Cell Biology and Regenerative Medicine and the Department of Medicine at Thomas Jefferson University.

Related Articles


In the study, published online in the journal Aging Cell, the researchers identified a protein interaction that controls the silencing of Oct4, a key transcription factor that is critical to ensuring that embryonic stem cells remain pluripotent. The protein, WRNp, is the product of a gene associated with Werner syndrome, an autosomal recessive disorder hallmarked by premature aging. The gene expression in Werner syndrome closely resembles that of normal aging, and as a result, Werner syndrome is an accepted model of aging.

They first found that WRNp accumulates at the Oct4 promoter in differentiating stem cells. They then found that WRNp interacts with another protein called Dnmt3b to control DNA methylation at the Oct4 promoter, according to researchers led by Renι Daniel, M.D., Ph.D., associate professor of Medicine.

Previously, Dnmt3b was identified to be a key player in the DNA methylation of the Oct4 promoter. DNA methylation of the Oct4 promoter inactivates the Oct4 gene. The inactivation, or silencing, of this gene is necessary for stem cell differentiation.

"We showed that the depletion of WRNp blocked the recruitment of Dnmt3b to the Oct4 promoter, and resulted in reduced methylation," Dr. Daniel said. "The reduced DNA methylation was associated with continued Oct4 expression, which resulted in attenuated differentiation."

Until now, the focus of studies on the role of WRNp in aging has been on telomeres. These studies have shown that telomeres undergo accelerated shortening and loss in Werner syndrome cells. But it remains to be shown if this is the major role that WRNp plays in the aging process.

"These results reveal a novel function of WRNp, and demonstrate that WRNp controls a key step in pluripotent stem cell differentiation," Dr. Daniel said. "Our data support the emerging hypothesis that attenuated stem cell differentiation is involved in aging. This lack of differentiated cells may contribute to failure to maintain organ or tissue function in the later stages of life."


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Johanna A. Smith, Abibatou M. N. Ndoye, Kyla Geary, Michael P. Lisanti, Olga Igoucheva, Renι Daniel. A role for the Werner syndrome protein in epigenetic inactivation of the pluripotency factor Oct4. Aging Cell, 2010; no DOI: 10.1111/j.1474-9726.2010.00585.x

Cite This Page:

Thomas Jefferson University. "Gene related to aging plays role in stem cell differentiation." ScienceDaily. ScienceDaily, 5 June 2010. <www.sciencedaily.com/releases/2010/06/100604132038.htm>.
Thomas Jefferson University. (2010, June 5). Gene related to aging plays role in stem cell differentiation. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2010/06/100604132038.htm
Thomas Jefferson University. "Gene related to aging plays role in stem cell differentiation." ScienceDaily. www.sciencedaily.com/releases/2010/06/100604132038.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) — Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins