Featured Research

from universities, journals, and other organizations

Side effects explained: Why common drugs can lead to broken bones

Date:
June 9, 2010
Source:
Cell Press
Summary:
New research helps to explain why some commonly used drugs come with a serious downside: They up your odds of breaking a bone. The drugs in question, glucocorticoids (e.g. cortisone and prednisone) and the insulin sensitizer rosiglitazone work through entirely different mechanisms as therapies for inflammatory diseases and diabetes respectively, and two new studies now show that they lead to bone loss in different ways too.

New research helps to explain why some commonly used drugs come with a serious downside: They up your odds of breaking a bone. The drugs in question, glucocorticoids (e.g. cortisone and prednisone) and the insulin sensitizer rosiglitazone work through entirely different mechanisms as therapies for inflammatory diseases and diabetes respectively, and two studies in the June issue of Cell Metabolism now show that they lead to bone loss in different ways too.

Both research teams, one at the University of Texas Southwestern Medical Center and the other at the Fritz-Lipmann Institute in Germany, say that this new molecular understanding of what happens to bone could lead to the design of drugs with fewer side effects. They also provide new insight into the basic biology of bone.

"People taking a high dose of glucocorticoids can be pretty sick with rheumatoid arthritis or severe asthma, for example, and in that case their systemic fracture risk doubles," said Jan Tuckermann of the Fritz-Lipmann Institute. "For a young person, that might be OK because their risk is very low to start, but, as you become older, it's a real problem."

In fact, osteoporosis is just one of a range of glucocorticoid's side effects, all of which look something like normal symptoms of aging, he added. Glucocorticoids are still used because they remain one of the most potent anti-inflammatories around. "Our goal is to find a way to reduce the side effects," Tuckermann said.

It should come as no surprise that glucocorticoids have unwanted effects. They represent a class of steroid hormone and glucocorticoid receptors are found in cells all over the body, including in the bones. But scientists didn't know which bone cells were important in producing the side effects on bone loss.

Bone is a rather dynamic tissue, explained Yihong Wan of UT Southwestern, the senior author of the other study. It is constantly being remodeled through a careful balance between the activities of bone-building osteoblasts and bone-resorbing osteoclasts.

Tuckermann's team now finds that glucocorticoids act on the osteoblast side of that equation. Studies in mice showed that animals lacking glucocorticoid receptors in their osteoblasts didn't show the same bone loss that glucocorticoids normally bring.

They were able to drill down further into the details of that interaction, and the results come as somewhat bad news. In fact, Tuckermann explained, activated glucocorticoid receptors are known to function in two different ways. Once the activated receptors enter a cell nucleus, they either find another receptor and partner up (to form a dimer) or they act indirectly, via other transcription factors (proteins that influence other genes). When glucocorticoid receptors form dimers, they go on to influence glucose metabolism. It is when they remain in their lone, monomer form that they play a role in inflammation.

Many had suspected that the beneficial effects of glucorticoids stemmed from that inflammatory pathway while the side effects resulted when the receptor formed dimers to influence glucose. Tuckermann's team now finds that it isn't really that clear cut. In fact, mice whose glucocorticoid receptors couldn't partner up with one another to influence glucose still developed bone loss on the drug.

But there is some good news too. The ill effects in bone all stem from one particular transcription factor, known as AP-1, their evidence shows. Tuckermann says it may now be possible to fine-tune glucocorticoid drugs such that they don't lead to that AP-1 interaction.

In the second study, Wan's team wanted to understand why long-term use of rosiglitazone in patients with diabetes make bones more fragile in diabetic patients, who are already at increased risk of bone fractures as it is. The insulin-sensitizing drug is known to act through the so-called peroxisome proliferator-activated receptor g (PPARg), a receptor that plays diverse roles in fat cell development, lipid metabolism and insulin sensitivity.

Emerging evidence suggested that PPARg also has an important job in bones. Earlier studies found that it suppresses the bone-building activities of osteoblasts. At the same time, an earlier study by Wan's team showed that PPARg speeds up the differentiation and activity of osteoclasts, to break down more bone.

Further experiments by Wan and her colleagues reveal some of the other players involved. They find that rosiglitazone's side effects on bone involve a transcriptional coactivator known as PGC1b, which coordinates with another molecular actor known as ERRa. Strikingly, they report, animals lacking PCG1b in their osteoclasts grow completely resistant to rosiglitazone-induced bone loss.

Wan notes that the effects of the drug on osteoblasts seem to occur through a different intermediary. This new understanding of how PPARg action in different types of cells will facilitate the design of improved diabetic drugs, such as selective PPARg modulators that retain the insulin-sensitizing benefits but dampen the detrimental bone loss effects, the researchers say.

The bottomline for Wan is this: "There is an explanation for why this diabetes drug causes bone loss," she said. "Based on this knowledge, better drugs can be developed."

The researchers include Wei Wei, University of Texas Southwestern Medical Center, Dallas, TX; Xueqian Wang, University of Texas Southwestern Medical Center, Dallas, TX; Marie Yang, University of Texas Southwestern Medical Center, Dallas, TX; Leslie C. Smith, Baylor College of Dentistry, Texas A&M University Health Sciences Center, Dallas, TX; Paul C. Dechow, Baylor College of Dentistry, Texas A&M University Health Sciences Center, Dallas, TX; and Yihong Wan, University of Texas Southwestern Medical Center, Dallas, TX.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Side effects explained: Why common drugs can lead to broken bones." ScienceDaily. ScienceDaily, 9 June 2010. <www.sciencedaily.com/releases/2010/06/100608135030.htm>.
Cell Press. (2010, June 9). Side effects explained: Why common drugs can lead to broken bones. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/06/100608135030.htm
Cell Press. "Side effects explained: Why common drugs can lead to broken bones." ScienceDaily. www.sciencedaily.com/releases/2010/06/100608135030.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
CDC Calls for New Ebola Safety Guidelines

CDC Calls for New Ebola Safety Guidelines

AP (Oct. 20, 2014) Centers for Disease Control and Prevention Director Dr. Tom Frieden laid out new guidelines for health care workers when dealing with the deadly Ebola virus including new precautions when taking off personal protective equipment. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins