Featured Research

from universities, journals, and other organizations

Model explains rapid transition toward division of labor in biological evolution

Date:
June 10, 2010
Source:
Public Library of Science
Summary:
The transition from colonies of individual cells to multicellular organisms can be achieved relatively rapidly, within one million generations, according to a new mathematical model that simplifies our understanding of this process.

The transition from colonies of individual cells to multicellular organisms can be achieved relatively rapidly, within one million generations, according to a new mathematical model, published June 10 in the open-access journal PLoS Computational Biology, that simplifies our understanding of this process.

Related Articles


Biological organisms are highly complex and are comprised of many different parts that function together to ensure the survival and reproduction of the whole. How and why complexity increases in the course of evolution is a question of great scientific and philosophical significance. Biologists have identified a number of major transitions in the evolution of complexity including the origin of chromosomes, eukaryotes, sexual reproduction, multicellular organisms, and social groups in insects. A crucial step in many of these transitions is the division of labor between components of the emerging higher-level evolutionary unit.

Understanding how the division of labor evolved in multicellular organisms is difficult because single cells are expected to act selfishly to protect their own existence instead of working cooperatively to achieve a more productive higher level of organization, explains author Sergey Gavrilets, Associate Director for Scientific Activities at the National Institute for Mathematical and Biological Synthesis and a professor at the University of Tennessee-Knoxville.

His new approach applies not only to cells within an organism but may be more broadly applied to the emergence of multiple cell types, complex organs, or even some insect societies. These findings help to answer many questions for evolutionary biologists working toward understanding the major transitions in the evolution of complexity.

Using germ and soma cells in volvocacean green algae as an example, Gavrilets' mathematical model describes the evolutionary emergence of the division of labor starting with a colony of undifferentiated individual cells and ending with completely differentiated multicellular organisms. It is the first model to show the evolution of complete germ-soma differentiation, where one part of the colony's cells (germ) eventually specializes in reproduction and the other part of the colony's cells (soma) specializes in survival..

In the model, the division of labor occurs through the evolution of the ability to develop in a variety of ways (developmental plasticity), meaning that some gene regulation is required. The results show that division of labor can occur if two conditions are met: there must be strong genetic relatedness and fitness trade-offs preventing individual cells from performing multiple functions efficiently.

"This particular model provides a very straightforward path for division of labor," Gavrilets said. "The model helps train our intuition about other more complex evolutionary processes."


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gavrilets S. Rapid Transition towards the Division of Labor via Evolution of Developmental Plasticity. PLoS Computational Biology, 2010; 6 (6): e1000805 DOI: 10.1371/journal.pcbi.1000805

Cite This Page:

Public Library of Science. "Model explains rapid transition toward division of labor in biological evolution." ScienceDaily. ScienceDaily, 10 June 2010. <www.sciencedaily.com/releases/2010/06/100610171712.htm>.
Public Library of Science. (2010, June 10). Model explains rapid transition toward division of labor in biological evolution. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2010/06/100610171712.htm
Public Library of Science. "Model explains rapid transition toward division of labor in biological evolution." ScienceDaily. www.sciencedaily.com/releases/2010/06/100610171712.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins