Featured Research

from universities, journals, and other organizations

Fundamental process in lysosomal function and protein degradation: Disorder leads to serious diseases

Date:
June 15, 2010
Source:
Helmholtz Association of German Research Centres
Summary:
The degradation of proteins in cells is vital to survival. Disruption of this process can result in serious disease. Researchers in Germany have now succeeded in identifying an essential cellular process necessary for the transport and degradation of macromolecules in specific cell organelles.

CT scan of the tibia. Healthy bone (left) is characterized by a lattice of trabecular bone and a clear marrow cavity. The bones of mice, in which the chloride/hydrogen ion exchanger CIC-7 has been converted into a pure chloride conductor (middle) show an irregular cluster of bone tissue, a mild form of osteopetrosis. If the protein CIC-7 is totally lacking (right) the function of the bone degrading cells is completely disrupted, leading to a severe form of osteopetrosis, also known as marble bone disease.
Credit: Photo by Dr. Stefanie Weinert / Copyright FMP/MDC

The degradation of proteins and other macromolecules in cells is vital to survival. Disruption of this process can result in serious disease. The research group of Professor Thomas Jentsch (Leibniz Institute for Molecular Pharmacology, FMP/ Max Delbrόck Center for Molecular Medicine, MDC, Berlin-Buch) has now succeeded in identifying an essential cellular process necessary for the transport and degradation of macromolecules in endosomes and lysosomes, respectively.

Related Articles


In two studies published in the same issue of the journal Science, they showed that -- contrary to scientific consensus -the function of these tiny cell organelles not only depends on the pH, but also on chloride ion accumulation in their interior.

Proteins are the building blocks and machines of life. Tens of thousands of them are present in each cell, where they perform essential tasks for the organism. Once they have fulfilled their function, they must be degraded to avoid causing damage. One way in which proteins can be degraded is via the digestion processes inside tiny cellular organelles, the lysosomes. The transport of the proteins destined for degradation to these cellular "trash bins" is partly carried out by endosomes, which deliver proteins from the cell surface to the cell interior.

The functionality of both endosomes and lysosomes depends on the ion concentration within their membrane-enclosed interior. In particular, an important role is ascribed to a high concentration of hydrogen ions, i.e. an acidic pH, inside those organelles.

The two studies by Dr. Stefanie Weinert, Dr. Gaia Novarino and Professor Thomas Jentsch focus on two ion transport proteins, the chloride transporters ClC-5 and ClC-7. These are located in the membrane of endosomes and/or lysosomes and exchange negatively charged chloride ions for positively charged hydrogen ions (protons).

ClC-5 is located in the membrane of endosomes in renal cells. If ClC-5 is defective or lacking altogether, proteins can hardly be absorbed from the urine any longer. In a cascade of indirect mechanisms, this leads to the development of kidney stones in Dent's disease.

ClC-7 is located in the membrane of lysosomes in all cells of the body. The research group by Thomas Jentsch showed already a few years ago that mutations of ClC-7 in mice and humans lead to severe disease symptoms. Impaired lysosomal function in the brain results in severe degenerative changes that leads to massive neuronal death. A dysfunction of bone-degrading osteoclasts causes an excessive calcification of bones (osteopetrosis).

The chloride-proton exchangers ClC-5 and ClC-7 function parallel to proton pumps, which ensures an acidic environment within endosomes and lysosomes. ClC-5 and ClC-7 transport chloride ions into these organelles, thereby electrically balancing the inward transport of positively charged protons through the "pump." Hitherto researchers had assumed that maintaining the charge balance was the sole task of ClC-5 and ClC-7, without which both the transport of endosomes and lysosomal protein degradation are impaired.

However, Professor Jentsch and his team showed several years ago that the pH in lysosomes devoid of ClC-7 is normal and that nevertheless lysosomal storage disease and osteopetrosis ensue. This means that charge balancing in lysosomes may involve a different, previously unknown mechanism, and that the main task of ClC-7 may rather be the regulation of lysosomal chloride concentration. The Berlin research group proposed that the exchange of chloride for protons, which are more highly concentrated in the acidic environment of lysosomes than in the rest of the cell, accumulates chloride ions in lysosomes. A high lysosomal chloride concentration may be functionally important.

"In an elegant experimental approach" as Professor Jentsch explains the test of this hypothesis, "Dr. Novarino and Dr. Weinert converted the ClC-5 and ClC-7 chloride-proton exchangers in the mouse into pure chloride conductors (channels). They exchanged a single amino acid out of a total of around 800 present in the ion transporters." These mutated transport proteins are optimally suited to compensate the charge transfer by the proton pump and therefore should, according to the hypothesis of the research group, support the acidification of the organelles very well.

On the other hand, the uncoupling of chloride transport from proton transport should significantly lower the accumulation of chloride into these organelles. Indeed, this prediction was confirmed experimentally in their mouse model. "Surprisingly," Professor Jentsch said, "the corresponding mice showed almost the same disease symptoms as with a total lack of the respective proteins."

With this experiment, the MDC and FMP researchers were able to show for the first time that not only the lack of endosomal/lysosomal acidification, but also a reduced accumulation of chloride ions in these organelles plays a crucial role in generating the severe symptoms of these hereditary diseases, that is a form of kidney stone disease as well as neurodegeneration. A dysregulation of organellar chloride concentration may also play a role in other human diseases.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal References:

  1. G. Novarino, S. Weinert, G. Rickheit, T. J. Jentsch. Endosomal Chloride-Proton Exchange Rather Than Chloride Conductance Is Crucial for Renal Endocytosis. Science, 2010; 328 (5984): 1398 DOI: 10.1126/science.1188070
  2. S. Weinert, S. Jabs, C. Supanchart, M. Schweizer, N. Gimber, M. Richter, J. Rademann, T. Stauber, U. Kornak, T. J. Jentsch. Lysosomal Pathology and Osteopetrosis upon Loss of H -Driven Lysosomal Cl- Accumulation. Science, 2010; 328 (5984): 1401 DOI: 10.1126/science.1188072

Cite This Page:

Helmholtz Association of German Research Centres. "Fundamental process in lysosomal function and protein degradation: Disorder leads to serious diseases." ScienceDaily. ScienceDaily, 15 June 2010. <www.sciencedaily.com/releases/2010/06/100615141755.htm>.
Helmholtz Association of German Research Centres. (2010, June 15). Fundamental process in lysosomal function and protein degradation: Disorder leads to serious diseases. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/06/100615141755.htm
Helmholtz Association of German Research Centres. "Fundamental process in lysosomal function and protein degradation: Disorder leads to serious diseases." ScienceDaily. www.sciencedaily.com/releases/2010/06/100615141755.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins