Featured Research

from universities, journals, and other organizations

Physical model describes structures of viral capsids

Date:
June 21, 2010
Source:
Universidad de Barcelona
Summary:
The genetic material of viruses is shielded by a protective protein covering called a capsid. Researchers in Spain have uncovered the strict selection rules that define capsid structure in spherical and bacilliform viruses.

Gallery of the bacilliform structures proposed by the physical model for the different sizes of alfalfa mosaic virus.
Credit: Image courtesy of Universidad de Barcelona

The genetic material of viruses is shielded by a protective protein covering called a capsid. The UB researchers David Reguera and Antoni Luque, of the Department of Fundamental Physics, have uncovered the strict selection rules that define capsid structure in spherical and bacilliform viruses, which they report in two papers published in the Proceedings of the National Academy of Sciences and the Biophysical Journal.

The main conclusion of the study is that viral capsids can only adopt a finite range of radii, lengths and protein numbers, making it possible to calculate and characterize all of their possible structures. "This model marks an important step towards understanding the viral assembly process and opens the way for controlling this process for applications in biotechnology, such as gene therapy, and applications in nanotechnology, for example in the creation of nanoscale moulds with highly precise dimensions for designing nanostructures," explains David Reguera.

Viral capsids are formed through a process of self-assembly governed by a universal physical principle: energy minimization. Based on this knowledge, it was possible to identify the potentially optimal architectures of viral capsids; that is, those structures which minimize the energy requirement. As Reguera explains, "we have found that the well-defined geometry observed in different spherical and bacilliform viruses is a product of free-energy minimization in the interaction between the different structural units of which the capsid is composed."

Since the 1960s scientsts have known that spherical viruses adopt a clearly defined structure with icosahedral symmetry, formed by groups of six and five proteins (hexamers and pentaments, respectively), similar to the panel structure of a football, for example. In the case of bacilliform viruses, however, the structure had not been clearly identified. The results of this new study suggest that the capsids of bacilliform viruses are generally formed by a tube-like central body, the ends of which are closed by isocahedral caps centred on one of the three axes of symmetry. These structures are similar to those of fullerenes and carbon nanotubes and have the advantage of being highly stable and resistant.

Reguera and Luque, with support from the researcher Roya Zandi, of the University of California, applied a simple physical model and found that the local energy is minimal for bacilliform capsids formed by a specific, discrete number of proteins distributed in a cylindrical body of hexamers and closed by isocahedral caps centred along the 5-, 3- and 2-fold axes.

The study corroborates the existence of this type of viral structure and, with the complimentary geometric model, serves as the basis for reproducing the architecture of spherical and bacilliform viruses in vivo and in vitro and for making informed predictions. The models have been successfully applied to several known viruses and confirm many of the hypotheses from earlier studies regarding the structure of the alfala mosaic virus, which adopts different lengths depending on the quantity of genetic material contained. Given that the different lengths correspond to the rules set out in the model, it has been possible to obtain definitive models of the finite possible structures.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal References:

  1. Antoni Luque, David Reguera. The Structure of Elongated Viral Capsids. Biophysical Journal, 2010; 98 (12): 2993 DOI: 10.1016/j.bpj.2010.02.051
  2. Antoni Luque, Roya Zandi, David Reguera. Optimal architectures of elongated viruses. Proceedings of the National Academy of Sciences, 2010; 107 (12): 5323 DOI: 10.1073/pnas.0915122107

Cite This Page:

Universidad de Barcelona. "Physical model describes structures of viral capsids." ScienceDaily. ScienceDaily, 21 June 2010. <www.sciencedaily.com/releases/2010/06/100616090221.htm>.
Universidad de Barcelona. (2010, June 21). Physical model describes structures of viral capsids. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2010/06/100616090221.htm
Universidad de Barcelona. "Physical model describes structures of viral capsids." ScienceDaily. www.sciencedaily.com/releases/2010/06/100616090221.htm (accessed August 29, 2014).

Share This




More Plants & Animals News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) — Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Fake Dogs Scare Real Geese from Wis. Park

Fake Dogs Scare Real Geese from Wis. Park

AP (Aug. 28, 2014) — Parks officials in Stevens Point, Wisconsin had a fowl problem. Canadian Geese were making a mess of a park, so officials enlisted cardboard versions of man's best friend. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins