Featured Research

from universities, journals, and other organizations

Asymetric nanostructures for early and more accurate prediction of cancer

Date:
June 24, 2010
Source:
Interuniversity Microelectronics Centre (IMEC)
Summary:
Nanotechnology Researchers in Belgium have demonstrated biosensors based on novel nanostructure geometries that increase the sensitivity and allow to detect extremely low concentrations of specific disease markers. This paves the way to early diagnostics of for example cancer by detecting low densities of cancer markers in human blood samples.

Researchers at the nanotechnology research centre imec (Leuven, Belgium) have demonstrated biosensors based on novel nanostructure geometries that increase the sensitivity and allow to detect extremely low concentrations of specific disease markers. This paves the way to early diagnostics of for example cancer by detecting low densities of cancer markers in human blood samples.

Functionalized nanoparticles can identify and measure extremely low concentrations of specific molecules. They enable the realization of diagnostic systems with increased sensitivity, specificity and reliability resulting in a better and more cost-efficient healthcare. And, going one step further, functionalized nanoparticles can help treat diseases, by destroying the diseased cells that the nanoparticles bind to.

Imec aims at developing biosensor systems exploiting a phenomenon known as localized surface plasmon resonance in noble metal (e.g. gold and silver) nanostructures. The biosensors are based on optical detection of a change in spectral response of the nanostructures upon binding a disease marker. The detection sensitivity can be increased by changing the morphology and size of the noble metal nanostructures. The biosensor system is cheap and easily extendable to multiparameter biosensing.

Imec now presents broken symmetry gold nanostructures that combine nanorings with nanodiscs. Combining different nanostructures in close proximity allows detailed engineering of the plasmon resonance of the nanostructures. More specifically, imec targeted an optimization of both the width of the resonance peak and the resonance shift upon binding of the disease marker. With respect to these parameters, the new geometries clearly outperform the traditional nanospheres. Therefore, they are better suited for practical use in sensitive biosensor systems.

"With our bio-nano research, we aim at playing an important role in developing powerful healthcare diagnostics and therapy. We work on innovative instruments to support the research into diseases and we look into portable technologies that can diagnose diseases at an early stage. We want to help the pharmaceutical and diagnostic industry with instruments to develop diagnostic tests and therapies more efficiently;" said Prof. Liesbet Lagae, program manager HUMAN++ on biomolecular interfacing technology.

Some of these results were achieved in collaboration with the Catholic University of Leuven (Leuven, Belgium), Imperial College (London, UK) and Rice University (Houston, Texas).


Story Source:

The above story is based on materials provided by Interuniversity Microelectronics Centre (IMEC). Note: Materials may be edited for content and length.


Cite This Page:

Interuniversity Microelectronics Centre (IMEC). "Asymetric nanostructures for early and more accurate prediction of cancer." ScienceDaily. ScienceDaily, 24 June 2010. <www.sciencedaily.com/releases/2010/06/100623085841.htm>.
Interuniversity Microelectronics Centre (IMEC). (2010, June 24). Asymetric nanostructures for early and more accurate prediction of cancer. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/06/100623085841.htm
Interuniversity Microelectronics Centre (IMEC). "Asymetric nanostructures for early and more accurate prediction of cancer." ScienceDaily. www.sciencedaily.com/releases/2010/06/100623085841.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins