Featured Research

from universities, journals, and other organizations

New method of peptide synthesis makes it easier to create drugs based on natural compounds

Date:
June 24, 2010
Source:
Vanderbilt University
Summary:
A team of chemists has developed a novel method for chemically synthesizing peptides that promises to lower the cost and increase the availability of drugs based on natural compounds.

Graduate student Dawn Makley holding a model of a peptide created with new synthesis method.
Credit: Steve Green, Vanderbilt University

A team of Vanderbilt chemists has developed a novel method for chemically synthesizing peptides that promises to lower the cost and increase the availability of drugs based on natural compounds.

The new synthesis technique is described in a paper published in the June 24 issue of the journal Nature.

Peptides are polymers made by stringing together two or more amino acids, the chemical building blocks of life, in a linear chain and folded into a globular form. DNA holds the blueprints for 20 "standard" amino acids, which cells use for manufacturing proteins -- peptides that perform basic cell functions. However, cells also create peptides that contain "non-natural" amino acids for a variety of different purposes by modifying standard peptides after they are produced.

The pharmaceutical industry has a growing interest in using peptides and proteins as therapeutic agents because they have highly specific biological activity associated with low toxicity. However, peptide-based drugs currently make up only a few percent of the total pharmaceutical market. The vast majority of the drugs on the market today are "small molecule" drugs that are synthesized completely in the laboratory.

"Scientists from many disciplines have sought improved methods to streamline the synthesis of peptides through purely chemical means in order to increase the diversity of the chemical tools available for the design of improved therapeutics," says Professor of Chemistry Jeff Johnston, who directed the effort. "Our discovery of a conceptually new approach to peptide synthesis brings this capability much closer to reality."

In the last 40 years, peptide synthesis has become highly automated. Peptide synthesis machines are widely used in research laboratories around the world. However, these machines are limited to building molecules from standard amino acids and are best suited for making relatively small peptides.

The new approach addresses one of the key limitations of current methods of peptide synthesis: the difficulty of incorporating non-natural amino acids. That is one reason why most current pharmaceuticals based on "biologics" include active ingredients extracted from cells grown by the relatively difficult and expensive fermentation process instead of being synthesized "from scratch" in the laboratory.

The Vanderbilt process -- developed by graduate students Bo Shen, who is now at Massachusetts Institute of Technology, and Dawn Makley -- makes it much easier to create peptides that incorporate non-natural amino acids.

Another advantage of Johnston's technique is controlling the "handedness" -- or chirality -- of the molecules it creates. Most biological molecules, including amino acids, typically come in two versions -- right-handed and left-handed -- which can have significantly different biological activities. Cells generally create and use left-handed peptides. Controlling handedness in traditional methods of peptide synthesis requires adding a number of additional steps, which substantially reduces the overall efficiency of the synthesis. The new method significantly streamlines this process.

"Our method complements conventional peptide synthesis like the helicopter complements conventional jet transport," Johnston says, "If you wish to get from one major city to another quickly, the jet is your best option. But if you want greater diversity in destinations, the helicopter is your ticket. I must admit, however, that we have plans for a version of our chemistry comparable to the tilt-rotor Osprey that combines the advantages of helicopter and fixed-wing aircraft."


Story Source:

The above story is based on materials provided by Vanderbilt University. The original article was written by David F. Salisbury. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "New method of peptide synthesis makes it easier to create drugs based on natural compounds." ScienceDaily. ScienceDaily, 24 June 2010. <www.sciencedaily.com/releases/2010/06/100623132104.htm>.
Vanderbilt University. (2010, June 24). New method of peptide synthesis makes it easier to create drugs based on natural compounds. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/06/100623132104.htm
Vanderbilt University. "New method of peptide synthesis makes it easier to create drugs based on natural compounds." ScienceDaily. www.sciencedaily.com/releases/2010/06/100623132104.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins