Featured Research

from universities, journals, and other organizations

Nematodes vanquish billion dollar pest

Date:
July 9, 2010
Source:
The Company of Biologists
Summary:
Diabrotica virgifera virgifera beetle larvae (known as western corn rootworm) wreak havoc on maize, causing an estimated $1 billion of damage every year to US agriculture. Knowing that Heterorhabditis bacteriophora nematodes kill the pest, researchers in Switzerland have successfully improved the nematode's response to a chemical, (E)-beta-caryophyllene, released by damaged maize roots, to attract the nematodes directly to the pest in a bid to produce an environmentally safe pesticide.

The larvae of Diabrotica virgifera virgifera beetles wreak havoc on maize. Feasting on the plants' roots, they are estimated to cause $1 billion of damage every year in the US. Ted Turlings from the University of Neuchβtel, Switzerland, explains that the pest, known as western corn rootworm, only arrived in Serbia in the 1990s, but since then it has marched through at least 11 European countries.

"Pesticides work to control the pest, but they are not environmentally friendly," explains Turlings and adds, "When it arrived in Germany in 2007 they wanted to eradicate it but the pesticide that they used killed millions of bees."

Looking for an alternative, more ecological, form of pest control, Turlings wondered whether predatory nematodes (microscopic worms) that munch on insects could defeat the pest. Knowing that Heterorhabditis bacteriophora, which kills western corn rootworm larvae, is relatively unresponsive to an alarm signal ((E)-beta-caryophyllene, which is released by the infested roots) Turlings has successfully improve H. bacteriophora's response to caryophyllene by selective breeding of the nematodes.

He publishes the results of his bid to produce an effective biopesticide in The Journal of Experimental Biology.

Using an 'olfactometer' (six tubes radiating out from a central point) packed with damp sand for the nematodes to crawl through, Ivan Hiltpold inserted capillaries into the sand, which released different odours at the end of three of the olfactometer's arms. Then he released H. bacteriophora nematodes at the centre of the olfactometer and allowed the nematodes to choose which odour they tracked. Timing how long it took 500 nematodes to reach the end of the trail in the caryophyllene arm of the olfactometer, Hiltpod collected the worms and allowed them to breed. Gathering the offspring 10 days later, he tested their responses to the three odours and again selected the 500 nematodes that reached the end of the caryophyllene trail first for breeding. Repeating the selection process 6 times, Hiltpold improved the nematode's performance significantly, decreasing the time it took 500 worms to reach the end of the caryophyllene trail from 10h to 2h.

Next Hiltpold tested how improving the nematode's response to caryophyllene had impacted on their potency. Sprinkling the selected nematodes directly on the pest larvae and waiting to see how many larvae died, he was relieved to find that the selected nematodes were only slightly less infectious than their forebears. This loss of potency could be overcome easily by the worm's increased response to caryophyllene, but how would the selected nematodes perform in a field?

"We couldn't test the nematodes in Switzerland because the western corn rootworm is not present yet, so we had to travel to Hungary," says Turlings. Teaming up with Stefan Toepfer and Ulrich Kuhlmann from CABI Europe-Switzerland who had access to western corn rootworm infected fields sown with two varieties of maize (one that produced caryophyllene and another that did not), Turlings' colleague, Mariane Baroni, sprayed solutions of the selected nematodes between the rows of maize in some plots and sprayed solutions of the unselected nematodes on other plots in the same fields. Then the team waited to see whether the selected nematodes offered any protection against the pest.

They did. The variety of maize that released caryophyllene was healthier than the variety that did not release caryophyllene after treatment with the selected nematodes; and the selected nematodes killed more pest larvae near the caryophyllene releasing maize than the unselected nematodes did.

Turlings says that this result is encouraging, but admits that there is more to be done before the nematodes can be used commercially. For instance, US varieties of maize have lost the caryophyllene alarm signal and application of the biopesticide is costly and problematic, but Turlings is optimistic that his team can crack both of these problems to add the nematodes to the maize farmer's arsenal.


Story Source:

The above story is based on materials provided by The Company of Biologists. The original article was written by Kathryn Knight. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U. and Turlings, T. C. J. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. Journal of Experimental Biology, 2010; 213: 2417-2423 [link]

Cite This Page:

The Company of Biologists. "Nematodes vanquish billion dollar pest." ScienceDaily. ScienceDaily, 9 July 2010. <www.sciencedaily.com/releases/2010/06/100624214306.htm>.
The Company of Biologists. (2010, July 9). Nematodes vanquish billion dollar pest. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2010/06/100624214306.htm
The Company of Biologists. "Nematodes vanquish billion dollar pest." ScienceDaily. www.sciencedaily.com/releases/2010/06/100624214306.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) — Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com
Argentina Worries Over Decline of Soybean Prices

Argentina Worries Over Decline of Soybean Prices

AFP (Sep. 27, 2014) — The drop in price of soy on the international market is a cause for concern in Argentina, as soybean exports are a major source of income for Latin America's third largest economy. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Mama Bear, Cubs Hang out in California Backyard

Mama Bear, Cubs Hang out in California Backyard

Reuters - US Online Video (Sep. 27, 2014) — A mama bear and her two cubs climb trees, wrestle and take naps in the backyard of a Monrovia, California home. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com
'Crazy' Climate Forces Colombian Farmers to Adapt

'Crazy' Climate Forces Colombian Farmers to Adapt

AFP (Sep. 26, 2014) — Once upon a time, farming was a blissfully low-tech business on Colombia's northern plains. Duration: 02:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins