Featured Research

from universities, journals, and other organizations

Why mercury is more dangerous in oceans

Date:
June 28, 2010
Source:
Duke University
Summary:
Even though freshwater concentrations of mercury are far greater than those found in seawater, it's the saltwater fish like tuna, mackerel and shark that end up posing a more serious health threat to humans who eat them.

Heileen Hsu-Kim is a researcher at Duke University.
Credit: Duke University Photography

Even though freshwater concentrations of mercury are far greater than those found in seawater, it's the saltwater fish like tuna, mackerel and shark that end up posing a more serious health threat to humans who eat them.

The answer, according to Duke University researchers, is in the seawater itself.

The potentially harmful version of mercury -- known as methylmercury -- latches onto dissolved organic matter in freshwater, while it tends to latch onto chloride -- the salt -- in seawater, according to new a study by Heileen Hsu-Kim, assistant professor of civil and environmental engineering at Duke's Pratt School of Engineering.

"The most common ways nature turns methylmercury into a less toxic form is through sunlight," Hsu-Kim said. "When it is attached to dissolved organic matter, like decayed plants or animal matter, sunlight more readily breaks down the methylmercury. However, in seawater, the methlymercury remains tightly bonded to the chloride, where sunlight does not degrade it as easily. In this form, methylmercury can then be ingested by marine animals."

Methylmercury is a potent neurotoxin that can lead to kidney dysfunctions, neurological disorders and even death. In particular, fetuses exposed to methylmercury can suffer from these same disorders as well as impaired learning abilities. Because fish and shellfish have a natural tendency to store methylmercury in their organs, they are the leading source of mercury ingestion for humans.

"The exposure rate of mercury in the U.S. is quite high," Hsu-Kim said. "A recent epidemiological survey found that up 8 percent of women had mercury levels higher than national guidelines. Since humans are on the top of the food chain, any mercury in our food accumulates in our body."

The results of Hsu-Kim's experiments, which have been published early online in the journal Nature Geoscience, suggest that scientists and policymakers should focus their efforts on the effects of mercury in the oceans, rather than freshwater.

Her research is supported by the National Institute of Environmental Health Science.

In the past, most of the scientific studies of effects of mercury in the environment have focused on freshwater, because the technology had not advanced to the point where scientists could accurately measure the smaller concentrations of mercury found in seawater. Though the concentrations may be smaller in seawater, mercury accumulates more readily in the tissues of organisms that consume it.

"Because sunlight does not break it down in seawater, the lifetime of methlymercury is much longer in the marine environment," Hsu-Kim said. "However, the Food and Drug Administration and the Environmental Protection Agency do not distinguish between freshwater and seawater."

Mercury enters the environment through many routes, but the primary sources are coal combustion, the refinement of gold and other non-ferrous metals, and volcanic eruptions. The air-borne mercury from these sources eventually lands on lakes or oceans and can remain in the water or sediments.

The key to the sun's ability to break down methylmercury is a class of chemicals known as reactive oxygen species. These forms of oxygen are the biochemical equivalent of the bull in the china shop because of the way they break chemical bonds. One way these reactive oxygens are formed is by sunlight acting on oxygen molecules in the water.

"These reactive forms of oxygen are much more efficient in breaking the bonds within the methylmercury molecule," Hsu-Kim said. "And if the methylmercury is bonded to organic matter instead of chloride, then the break down reaction is much faster."

Tong Zhang, a Ph.D. candidate in Hsu-Kim's laboratory, was first author on the paper.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tong Zhang, Heileen Hsu-Kim. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nature Geoscience, 2010; DOI: 10.1038/ngeo892

Cite This Page:

Duke University. "Why mercury is more dangerous in oceans." ScienceDaily. ScienceDaily, 28 June 2010. <www.sciencedaily.com/releases/2010/06/100627155107.htm>.
Duke University. (2010, June 28). Why mercury is more dangerous in oceans. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2010/06/100627155107.htm
Duke University. "Why mercury is more dangerous in oceans." ScienceDaily. www.sciencedaily.com/releases/2010/06/100627155107.htm (accessed September 16, 2014).

Share This



More Earth & Climate News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins