Featured Research

from universities, journals, and other organizations

Why mercury is more dangerous in oceans

Date:
June 28, 2010
Source:
Duke University
Summary:
Even though freshwater concentrations of mercury are far greater than those found in seawater, it's the saltwater fish like tuna, mackerel and shark that end up posing a more serious health threat to humans who eat them.

Heileen Hsu-Kim is a researcher at Duke University.
Credit: Duke University Photography

Even though freshwater concentrations of mercury are far greater than those found in seawater, it's the saltwater fish like tuna, mackerel and shark that end up posing a more serious health threat to humans who eat them.

Related Articles


The answer, according to Duke University researchers, is in the seawater itself.

The potentially harmful version of mercury -- known as methylmercury -- latches onto dissolved organic matter in freshwater, while it tends to latch onto chloride -- the salt -- in seawater, according to new a study by Heileen Hsu-Kim, assistant professor of civil and environmental engineering at Duke's Pratt School of Engineering.

"The most common ways nature turns methylmercury into a less toxic form is through sunlight," Hsu-Kim said. "When it is attached to dissolved organic matter, like decayed plants or animal matter, sunlight more readily breaks down the methylmercury. However, in seawater, the methlymercury remains tightly bonded to the chloride, where sunlight does not degrade it as easily. In this form, methylmercury can then be ingested by marine animals."

Methylmercury is a potent neurotoxin that can lead to kidney dysfunctions, neurological disorders and even death. In particular, fetuses exposed to methylmercury can suffer from these same disorders as well as impaired learning abilities. Because fish and shellfish have a natural tendency to store methylmercury in their organs, they are the leading source of mercury ingestion for humans.

"The exposure rate of mercury in the U.S. is quite high," Hsu-Kim said. "A recent epidemiological survey found that up 8 percent of women had mercury levels higher than national guidelines. Since humans are on the top of the food chain, any mercury in our food accumulates in our body."

The results of Hsu-Kim's experiments, which have been published early online in the journal Nature Geoscience, suggest that scientists and policymakers should focus their efforts on the effects of mercury in the oceans, rather than freshwater.

Her research is supported by the National Institute of Environmental Health Science.

In the past, most of the scientific studies of effects of mercury in the environment have focused on freshwater, because the technology had not advanced to the point where scientists could accurately measure the smaller concentrations of mercury found in seawater. Though the concentrations may be smaller in seawater, mercury accumulates more readily in the tissues of organisms that consume it.

"Because sunlight does not break it down in seawater, the lifetime of methlymercury is much longer in the marine environment," Hsu-Kim said. "However, the Food and Drug Administration and the Environmental Protection Agency do not distinguish between freshwater and seawater."

Mercury enters the environment through many routes, but the primary sources are coal combustion, the refinement of gold and other non-ferrous metals, and volcanic eruptions. The air-borne mercury from these sources eventually lands on lakes or oceans and can remain in the water or sediments.

The key to the sun's ability to break down methylmercury is a class of chemicals known as reactive oxygen species. These forms of oxygen are the biochemical equivalent of the bull in the china shop because of the way they break chemical bonds. One way these reactive oxygens are formed is by sunlight acting on oxygen molecules in the water.

"These reactive forms of oxygen are much more efficient in breaking the bonds within the methylmercury molecule," Hsu-Kim said. "And if the methylmercury is bonded to organic matter instead of chloride, then the break down reaction is much faster."

Tong Zhang, a Ph.D. candidate in Hsu-Kim's laboratory, was first author on the paper.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tong Zhang, Heileen Hsu-Kim. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nature Geoscience, 2010; DOI: 10.1038/ngeo892

Cite This Page:

Duke University. "Why mercury is more dangerous in oceans." ScienceDaily. ScienceDaily, 28 June 2010. <www.sciencedaily.com/releases/2010/06/100627155107.htm>.
Duke University. (2010, June 28). Why mercury is more dangerous in oceans. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2010/06/100627155107.htm
Duke University. "Why mercury is more dangerous in oceans." ScienceDaily. www.sciencedaily.com/releases/2010/06/100627155107.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Florida Might Legalize Black Bear Hunting

Florida Might Legalize Black Bear Hunting

Newsy (Jan. 24, 2015) A string of black bear attacks has Florida officials considering lifting the ban on hunting the animals to control their population. Video provided by Newsy
Powered by NewsLook.com
Dramatic Footage Shows Coast Guard Rescue Off Scottish Coast

Dramatic Footage Shows Coast Guard Rescue Off Scottish Coast

Reuters - News Video Online (Jan. 23, 2015) Footage just released by the UK Coast Guard shows a dramatic helicopter rescue off the Scottish coast, where five men were plucked to safety after their fishing boat sank on Saturday. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Stunning Wingsuit Proximity Flying in Norway

Stunning Wingsuit Proximity Flying in Norway

Rumble (Jan. 23, 2015) A collection of amazing shots from flights made in the Aurland Valley in Norway. How incredible is that? Credit to &apos;BASEjumper&apos;. Video provided by Rumble
Powered by NewsLook.com
Senate Agrees Climate Change Is Happening, Just Not On Why

Senate Agrees Climate Change Is Happening, Just Not On Why

Newsy (Jan. 22, 2015) The Senate voted to confirm climate change is real, but some still weren&apos;t on board with the idea that humans are causing it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins