Featured Research

from universities, journals, and other organizations

How rules of physics in quantum world change when applied to classical world

Date:
July 3, 2010
Source:
Dartmouth College
Summary:
Researchers have discovered a potentially important piece of the quantum/classical puzzle -- learning how the rules of physics in the quantum world (think smaller than microscopic) change when applied to the classical world (think every day items, like cars and trees).

In a study published in the July 1, 2010, issue of the journal Nature, Associate Professor of Physics and Astronomy Alex Rimberg and his colleagues describe one example of the microscopic quantum world influencing, even dominating they say, the behavior of something in the macroscopic classical world.
Credit: Joseph Mehling, Dartmouth College

Dartmouth researchers have discovered a potentially important piece of the quantum/classical puzzle -- learning how the rules of physics in the quantum world (think smaller than microscopic) change when applied to the classical world (think every day items, like cars and trees).

In a study published in the July 1 issue of the journal Nature, Associate Professor of Physics and Astronomy Alex Rimberg and his colleagues describe one example of the microscopic quantum world influencing, even dominating they say, the behavior of something in the macroscopic classical world. They used tiny semiconducting crystals that contain two separate reservoirs of electrons to explore the different influences of both classical and quantum physics.

"We found that the motion of the crystals is not dominated by something classical like thermal motion, but instead by random quantum fluctuations in the number of electrons tunneling through the barrier; the fluctuations were the size of about 10,000 electrons," says Rimberg. "But the macroscopic world in this study also influences the quantum world, in that the vibrations of the crystal caused the electrons to tunnel in big bunches, more or less in sync with the vibrations of the crystal."

One major question in quantum physics deals with the connection between the microscopic and macroscopic worlds. Rimberg explains that scientists know that microscopic objects such as electrons obey the laws of quantum mechanics, while macroscopic objects obey Newton's laws. Researchers are still learning exactly how classical behavior emerges from quantum behavior as systems become larger and larger.

Rimberg says that the difference in size between the classical and quantum parts of thesystem described in this paper is really extreme. "To give a sense of perspective, we could imagine that the 10,000 electrons correspond to something small like a flea. To complete the analogy, the crystal would have to be the size of Mt. Everest. If we imagine the flea jumping on Mt. Everest to make it move, then the resulting vibrations would be on the order of meters."

Rimberg's future work will use nonlinear superconducting systems, different from using the semiconducting crystals in this experiment, to make very strongly quantum mechanical systems. Nonlinear classical systems can show unpredictable, chaotic behavior; the behavior of the corresponding quantum systems is not well understood. This effort will be a prelude to studying the quantum properties of mechanical resonators that are smaller than the crystals in this experiment, but definitely not microscopic either; they are the things in the murky borderland between quantum and classical regimes.

Rimberg was worked on this study with colleagues at Dartmouth, Miles Blencowe, Joel Stettenheim, Feng Pan, Mustafa Bal, and Weiwei Zue. They were joined by Madhu Thalakulam and Zhonquig Ji from Rice University; and Loren Pfeiffer and K.W. West from Bell Laboratories.

The research was funded by the U.S. Army Research Office and the National Science Foundation.


Story Source:

The above story is based on materials provided by Dartmouth College. The original article was written by Susan Knapp. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joel Stettenheim, Madhu Thalakulam, Feng Pan, Mustafa Bal, Zhonqing Ji, Weiwei Xue, Loren Pfeiffer, K. W. West, M. P. Blencowe & A. J. Rimberg. A macroscopic mechanical resonator driven by mesoscopic electrical back-action. Nature, 2010; DOI: 10.1038/nature09123

Cite This Page:

Dartmouth College. "How rules of physics in quantum world change when applied to classical world." ScienceDaily. ScienceDaily, 3 July 2010. <www.sciencedaily.com/releases/2010/06/100630132740.htm>.
Dartmouth College. (2010, July 3). How rules of physics in quantum world change when applied to classical world. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2010/06/100630132740.htm
Dartmouth College. "How rules of physics in quantum world change when applied to classical world." ScienceDaily. www.sciencedaily.com/releases/2010/06/100630132740.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins