Featured Research

from universities, journals, and other organizations

When food intake stops, enzyme turns off production of fats, cholesterol

Date:
July 1, 2010
Source:
Massachusetts General Hospital
Summary:
Researchers have found that an enzyme with several important roles in energy metabolism also helps to turn off the body's generation of fats and cholesterol under conditions of fasting. Their report describes how SIRT1, one of a group of enzymes called sirtuins, suppresses the activity of a family of proteins called SREBPs, which control the body's synthesis and handling of fats and cholesterol.

Massachusetts General Hospital (MGH) investigators have found that an enzyme with several important roles in energy metabolism also helps to turn off the body's generation of fats and cholesterol under conditions of fasting.

Related Articles


The report in Genes & Development describes how SIRT1, one of a group of enzymes called sirtuins, suppresses the activity of a family of proteins called SREBPs, which control the body's synthesis and handling of fats and cholesterol. The findings could lead to new approaches to treating conditions involving elevated cholesterol and lipid levels.

"SIRT1 had previously been shown to act as an energy sensor, promoting the use of stored fat in response to food deprivation; however, its function in shutting down fat and cholesterol synthesis was unknown," says Amy Walker, PhD, of the MGH Cancer Center, the study's lead author. "These findings point to SIRT1 as a master regulator of physiologic energy stability that controls the synthesis and storage of fat, as well as its usage as fuel."

Under normal conditions, the body produces appropriate levels of fats and cholesterol, both of which are essential to life. A high-fat diet can cause abnormal elevations in fat and cholesterol levels in the blood, which may lead to cardiovascular disease, type 2 diabetes, hypertension and other serious disorders. If the body is deprived of food for a short time, it shuts down the production and storage of fat and cholesterol and shifts to using stored fats as the primary source of energy. Fasting also is known to turn off the activity of SREBP proteins, and the research team investigated whether direct suppression of SREBPs by SIRT1 was responsible for the metabolic shift.

A series of experiments in worms, fruitflies and mice showed that the versions of SIRT1 present in those animals suppressed SREBP activity and the associated synthesis and storage of fats. They also showed in mouse and human cells that SIRT1 acts on SREBP by removing a protective molecule, marking the protein for degradation, and that inhibiting SIRT1 activity caused levels of SREBP to rise. Treating genetically obese mice fed a high-fat diet with an agent that increases sirtuin activity suppressed the expression of SREBP-regulated fat synthesis genes and also reduced the amount of fat stored in the animals livers.

"This study is significant because it explains the signals that tell the body to burn fat in response to fasting or dieting," says David Sinclair, PhD, a professor of Pathology at Harvard Medical School (HMS) who helped discover the genes that code for sirtuins but was not involved with this MGH-led study. "This improved understanding could help treat and prevent metabolic diseases such as atherosclerosis and type 2 diabetes."

Sirtuins have also been associated with the increased longevity in response to reduced calorie intake observed in several species of animals. Drugs that stimulate sirtuin activity are currently being investigated for treatment of diabetes and related conditions.

"Sirtuin activators could strengthen SIRT1 functions that may be suppressed in individuals with cardiometabolic disorders," explains Anders Näär, PhD, of the MGH Center for Cancer Research, senior author of the current study. "Our results suggest these agents may be able to 'trick' the body into responding as though it was experiencing fasting, with beneficial metabolic consequences, but that hypothesis needs to be tested in future studies." Näär is an associate professor of Cell Biology and Walker is an instructor in Medicine at HMS.

The study was supported by the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging at HMS and grants from the National Institutes of Health. Additional co-authors of the Genes & Development article are Fajun Yang, Karen Jiang, Jun-Yuan Ji, Toshi Shioda, Peter Mulligan, Hani Najafi-Shoushtari, Josh Black, Jitendra Thakur, Johnathan Whetstein, Raul Mostoslavsky and Nicholas Dyson, MGH Cancer Center; Jennifer Watts, Washington State University; Aparna Purushotham and Xiaoling Li, National Institute of Environmental Health Sciences; Olivier Boss, Michael Hirsch, Scott Ribich, Jesse Smith, Kristine Israelian and Christoph Westphal, Sirtris Pharmaceuticals; Joseph Rodgers and Pere Puigserver, Dana-Farber Cancer Institute, Sarah Elson and Lisa Kadyk, Exelixis, Inc., and Anne Hart, Brown University.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "When food intake stops, enzyme turns off production of fats, cholesterol." ScienceDaily. ScienceDaily, 1 July 2010. <www.sciencedaily.com/releases/2010/06/100630171658.htm>.
Massachusetts General Hospital. (2010, July 1). When food intake stops, enzyme turns off production of fats, cholesterol. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2010/06/100630171658.htm
Massachusetts General Hospital. "When food intake stops, enzyme turns off production of fats, cholesterol." ScienceDaily. www.sciencedaily.com/releases/2010/06/100630171658.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) — Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) — Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) — Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins