Featured Research

from universities, journals, and other organizations

Map of herpes virus protein suggests a new drug therapy

Date:
July 8, 2010
Source:
Tufts University, Health Sciences
Summary:
New research reveals the unusual structure of a key protein complex that allows a herpes virus to invade cells. This close-up of the herpes virus's "cell-entry machinery" sheds light on how herpes viruses work and provides a promising new target for antiviral drugs.

An image shows the structure of the cell-entry protein complex from herpes simplex virus type 2. One protein is represented in red, the other in beige. The background shows the x-ray diffraction pattern used to determine the structure of the protein complex.
Credit: Image courtesy of Tirumala K. Chowdary, Tufts University School of Medicine

The mechanism by which a herpes virus invades cells has remained a mystery to scientists seeking to thwart this family of viruses. New research funded by the National Institutes of Health and published online in advance of print in Nature Structural & Molecular Biology reveals the unusual structure of the protein complex that allows a herpes virus to invade cells. This detailed map of a key piece of the herpes virus "cell-entry machinery" gives scientists a new target for antiviral drugs.

Related Articles


"Most viruses need cell-entry proteins called fusogens in order to invade cells. We have known that the herpes virus fusogen does not act alone and that a complex of two other viral cell-entry proteins is always required. We expected that this complex was also a fusogen, but after determining the structure of this key protein complex, we found that it does not resemble other known fusogens," said senior author Ekaterina Heldwein, PhD, assistant professor in the molecular biology and microbiology department at Tufts University School of Medicine.

"This unexpected result leads us to believe that this protein complex is not a fusogen itself but that it regulates the fusogen. We also found that certain antibodies interfere with the ability of this protein complex to bind to the fusogen, evidence that antiviral drugs that target this interaction could prevent viral infection," Heldwein continued. Heldwein is also a member of the biochemistry and molecular microbiology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts.

"Katya Heldwein's work has resulted in a map of the protein complex needed to trigger herpes virus infection. The NIH Director's New Innovator Awards are designed to support such breakthroughs. This research not only adds to what we know about how herpes viruses infect mammalian cells, but also sets the stage for new therapeutics that restrict herpes virus's access to the cell," said Jeremy M. Berg, PhD, director of the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health.

"We hope that determining the structure of this essential piece of the herpes virus cell-entry machinery will help us answer some of the many questions about how herpes virus initiates infection. Knowing the structures of cell-entry proteins will help us find the best strategy for interfering with this pervasive family of viruses," said first author Tirumala K. Chowdary, PhD, a postdoctoral associate in the department of molecular biology and microbiology at TUSM and member of Heldwein's lab.

Currently, there is no cure for herpes viruses. Upon infection, the viruses remain in the body for life and can stay inactive for long periods of time. When active, however, different herpes viruses can cause cold sores, blindness, encephalitis, or cancers. More than half of Americans are infected with herpes simplex virus type 1 (HSV-1), which causes cold sores, by the time they reach their 20s. Currently, about one in six Americans is infected with herpes simplex virus type 2 (HSV-2), the virus responsible for genital herpes. Complications of HSV-2, a sexually-transmitted disease, include recurrent painful genital sores, psychological distress, and, if transmitted from mother to child, potentially fatal infections in newborn infants.

Heldwein teamed up with colleagues at University of Pennsylvania and used x-ray crystallography along with cell microscopy techniques to study the structure and function of this cell-entry protein complex in HSV-2. Heldwein is currently developing a molecular movie that illustrates how herpes virus enters the cell.

Additional authors are Tina Cairns, PhD, a research specialist; Doina Atanasiu, a research associate; and Gary Cohen, PhD, professor and chair, all in the department of microbiology at the University of Pennsylvania School of Dental Medicine; and Roselyn Eisenberg, PhD, professor in the department of microbiology at the University of Pennsylvania School of Veterinary Medicine.

This work was funded by the Office of the Director of the National Institutes of Health, through a New Innovator Award in 2007 to Ekaterina Heldwein. The New Innovator Awards, part of the NIH Roadmap for Medical Research initiative, are awarded to support early-career scientists who take innovative -- and potentially transformative -- approaches to major challenges in biomedical research. The work was also funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, and the Pew Scholar Program in Biomedical Sciences.


Story Source:

The above story is based on materials provided by Tufts University, Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tirumala K Chowdary, Tina M Cairns, Doina Atanasiu, Gary H Cohen, Roselyn J Eisenberg, Ekaterina E Heldwein. Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nature Structural & Molecular Biology, 2010; DOI: 10.1038/nsmb.1837

Cite This Page:

Tufts University, Health Sciences. "Map of herpes virus protein suggests a new drug therapy." ScienceDaily. ScienceDaily, 8 July 2010. <www.sciencedaily.com/releases/2010/07/100706112603.htm>.
Tufts University, Health Sciences. (2010, July 8). Map of herpes virus protein suggests a new drug therapy. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2010/07/100706112603.htm
Tufts University, Health Sciences. "Map of herpes virus protein suggests a new drug therapy." ScienceDaily. www.sciencedaily.com/releases/2010/07/100706112603.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins