Featured Research

from universities, journals, and other organizations

Footloose glaciers crack up: New detailed observations of what happens when glaciers float on ocean surface

Date:
July 15, 2010
Source:
Scripps Institution of Oceanography / University of California, San Diego
Summary:
Glaciers that lose their footing on the seafloor and begin floating behave very erratically, according to a new study. Floating glaciers produce larger icebergs than their grounded cousins and do so at unpredictable intervals, researchers find.

View of Columbia Glacier terminus from sea level. The calving front is approximately five kilometers (3.1 miles) wide and between 20 and 70 meters (66 and 230 feet) tall. This image was taken after the calving front came afloat.
Credit: Shad O'Neel, USGS

Glaciers that lose their footing on the seafloor and begin floating behave very erratically, according to a new study led by a Scripps Institution of Oceanography, UC San Diego researcher.

Floating glaciers produce larger icebergs than their grounded cousins and do so at unpredictable intervals, according to Scripps glaciologist Fabian Walter and colleagues in a paper to be published in the journal Geophysical Research Letters.

This study presents the first detailed observation of the transition from grounded to floating glaciers. Such a transition is currently taking place at Columbia Glacier, one of Alaska's many tidewater glaciers. Tidewater glaciers flow directly into the ocean, ending at a cliff in the sea, where icebergs are formed. Prior to this study, Alaskan tidewater glaciers were believed to be exclusively "grounded" (resting on the ocean floor), and unable to float without disintegrating.

However, Columbia Glacier unexpectedly developed a floating extension in 2007 that has endured far longer than researchers expected. The research team believes that this floating section may have been caused by the speed at which the glacier is receding. Columbia is one of the fastest receding glaciers in the world, having retreated 4 kilometers (2.49 miles) since 2004, and nearly 20 kilometers (12.43 miles) since 1980.

"We're seeing more tidewater glaciers retreat," Walter said. "As they retreat, they thin and that increases the likelihood that they'll come afloat."

The study, co-authored by U.S. Geological Survey (USGS) glaciologist and Scripps alumnus Shad O'Neel, is part of a larger effort to understand and include calving in large-scale glacier models, which are essential in producing accurate forecasts of sea-level rise. The research team conducted its study on Columbia Glacier by installing a seismometer, a sensor that measures seismic waves that are produced by shifts in geologic formations, including earthquakes, landslides, and glacier calving. They studied data collected from 2004-2005 and 2008-2009 that allowed them to compare the glacier's activity before and after it began floating.

The formation of icebergs, through a process known as "calving," is a leading source of additional water for the global ocean basin. As this study confirms, grounded glaciers and floating glaciers often show fundamentally different calving mechanics. However, iceberg calving is also one of the least understood processes involved in ice mass loss and consequential sea level rise. This study, which is funded by the National Science Foundation, sheds light on the process by comparing the size and frequency of icebergs calved by a glacier during both floating and grounded conditions.

Calving occurs when fractures in the ice join up and cause a piece of ice to completely separate from the main glacier to form an iceberg. Unlike the floating glaciers, grounded glaciers calve icebergs nearly continuously, but they are generally quite small.

Through this study, scientists can begin to analyze the mechanics of the calving process in glaciers (both floating and grounded) and ice shelves, which will allow them to better understand and predict iceberg production from glaciers and ice sheets. These predictions, in turn, will provide a more accurate estimate of sea-level rise in the coming years.


Story Source:

The above story is based on materials provided by Scripps Institution of Oceanography / University of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Institution of Oceanography / University of California, San Diego. "Footloose glaciers crack up: New detailed observations of what happens when glaciers float on ocean surface." ScienceDaily. ScienceDaily, 15 July 2010. <www.sciencedaily.com/releases/2010/07/100714144159.htm>.
Scripps Institution of Oceanography / University of California, San Diego. (2010, July 15). Footloose glaciers crack up: New detailed observations of what happens when glaciers float on ocean surface. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2010/07/100714144159.htm
Scripps Institution of Oceanography / University of California, San Diego. "Footloose glaciers crack up: New detailed observations of what happens when glaciers float on ocean surface." ScienceDaily. www.sciencedaily.com/releases/2010/07/100714144159.htm (accessed September 16, 2014).

Share This



More Earth & Climate News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins