Featured Research

from universities, journals, and other organizations

High-speed study of zebrafish larvae: New technique can analyze larvae in seconds

Date:
July 19, 2010
Source:
Massachusetts Institute of Technology
Summary:
With the aim of speeding up the process of studying zebrafish larvae and enabling large-scale studies, engineers have developed a new technique that can analyze the larvae in seconds.

Zebrafish embryos, seen here, are transparent and have internal organs that can be easily seen as they develop.
Credit: Image courtesy of MIT

One of the most commonly studied laboratory animals is the zebrafish -- a tiny fish with transparent embryos, or larvae, whose internal organs can be easily seen as they develop.

Because they are genetically similar to humans and have complex organs, biologists often use zebrafish as a model for human diseases such as cancer, liver disease and heart disease. However, one limitation of zebrafish studies is that it takes several minutes to visually examine each larva. This has kept researchers from using the fish in experiments that require a large number of animals, such as testing the effects of many different drugs.

With the aim of speeding up the process and enabling large-scale studies, engineers at MIT have developed a new technique that can analyze larvae in seconds. The researchers, led by Mehmet Fatih Yanik, associate professor of electrical engineering and computer science, describe the new technology in the July 18 issue of the journal Nature Methods. First authors of the Nature Methods paper are graduate students Carlos Pardo-Martin and Tsung-Yao Chang; co-authors are Bryan Koo, Cody Gilleland and Steve Wasserman.

"There is significant need for high-throughput [automated] studies on whole animals, at high resolution," says Yanik. "People are currently doing this manually, which is too slow. Ours is the only system that can take a large library of chemicals and screen it on thousands of vertebrates."

Although humans and zebrafish may not appear to be closely related, many zebrafish organs and much of its biochemistry are similar to those of humans. For example, zebrafish and humans share the same liver enzymes, so the fish are useful for testing drugs that might cause liver damage. They also make good subjects for studies of cancer, Parkinson's disease, Alzheimer's, diabetes, amyotrophic lateral sclerosis (ALS) and other diseases, says Yanik.

Zebrafish take only seven days to fully develop, and most of their organs are formed by the third day of development, which makes zebrafish studies faster than those with mice or other slow-growing mammals. Best of all, the transparency of the larvae lets researchers directly see the effects of drugs or genetic mutations.

However, inspecting the animals is tedious and time-consuming. "We have to manually look at each embryo in a dish, which involves a lot of positioning and repositioning," says Leonard Zon, professor of hematology and oncology at Harvard Medical School, who was not involved in the research. "Having the ability to flow the embryos through a machine and image them on the fly is going to be very helpful."

With the new MIT system, larvae are pumped from a holding area to an imaging platform, where they are automatically rotated so the area of greatest interest can be seen. This is important because if the larvae are in the wrong position, the yolk or pigmentation on the skin may block the organs that the researcher wants to observe. The animals remain unharmed throughout the process.

The microscope's resolution is high enough to image individual cells, and the entire process takes about 19 seconds per animal, compared to about 10 minutes for manual inspection. To demonstrate the system's effectiveness, the MIT team imaged the neurons that project from the zebrafish retina to the brain. The system could also be used to observe tumor growth, organ regeneration or stem-cell migration, says Yanik.

Yanik's team has applied for a patent on the device and is now looking into commercial applications to use the technology to screen large numbers of drugs on various zebrafish disease models. The researchers are also working on further speeding up the system and developing ways to process the huge amounts of data generated by the imaging machine.

"The development of these powerful technologies for the monitoring and manipulation of model organisms, such as individual zebrafish in a rapid fashion, is representative of one type of high-impact research that the NIH Director's New Innovators Award program was designed to promote. Professor Yanik demonstrated tremendous creativity and accomplishment early in his independent career, and the New Innovator Award helped provide him and his team the freedom to vigorously pursue their ideas," says Jeremy M. Berg, director of the National Institute of General Medical Sciences, who helps lead the New Innovator Award program at the NIH.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. Carlos Pardo-Martin, Tsung-Yao Chang, Bryan Kyo Koo, Cody L Gilleland, Steven C Wasserman, Mehmet Fatih Yanik. High-throughput in vivo vertebrate screening. Nature Methods, 2010; DOI: 10.1038/nmeth.1481

Cite This Page:

Massachusetts Institute of Technology. "High-speed study of zebrafish larvae: New technique can analyze larvae in seconds." ScienceDaily. ScienceDaily, 19 July 2010. <www.sciencedaily.com/releases/2010/07/100718204737.htm>.
Massachusetts Institute of Technology. (2010, July 19). High-speed study of zebrafish larvae: New technique can analyze larvae in seconds. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2010/07/100718204737.htm
Massachusetts Institute of Technology. "High-speed study of zebrafish larvae: New technique can analyze larvae in seconds." ScienceDaily. www.sciencedaily.com/releases/2010/07/100718204737.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins