Featured Research

from universities, journals, and other organizations

Fourth property of electrons? Electric dipole moment would explain creation of universe

Date:
July 20, 2010
Source:
Helmholtz Association of German Research Centres
Summary:
Do electrons have a fourth property in addition to mass, charge and spin, as popular physics theories such as supersymmetry predict? Researchers from Germany, the Czech Republic and the United States want to find the answer to this fundamental question of physics. In order to improve the precision of previous measurements, they have created a new material with the aid of the Juelich supercomputer JUROPA.

Juelich researchers want to demonstrate the electric dipole moment of the electron in cooperation with colleagues in the USA and the Czech Republic. Many physical theories presume its existence -- for example, some theories concerning the creation of the universe. In order to improve the precision of previous measurements, they have created a new ceramic material with the aid of the Juelich supercomputer JUROPA.
Credit: Forschungszentrum Juelich

Electrons are negatively charged elementary particles. They form the shells around atoms and ions. This or something similar is what you will find in text books. Soon, however, this information may have to be supplemented.

The reason is that many physicists believe that electrons have a permanent electric dipole moment. An electric dipole moment is usually created when positive and negative charges are spatially separated. Similar to the north and south poles of a magnet, there are two electric poles. In the case of electrons, the situation is much more complicated because electrons should not actually have any spatial dimension.

Despite this, an entire range of physical theories that go beyond the standard model of elementary particle physics are based upon the existence of dipole moment. These theories in turn would explain how the universe in the form that we know it could have been created in the first place. According to prevailing theories, the big bang some 13.7 billion years ago would have had to have created just as much matter as antimatter. Since both obliterate each other, nothing would have remained. In reality, however, more matter than antimatter was actually created. An electric dipole moment of the electron could explain this imbalance.

Up to now, nobody has successfully proven the existence of this assumed tiny dipole moment. Existing methods are simply not sensitive enough. A small piece of ceramic is set to change this soon.

Dr. Marjana Ležaić and Dr. Konstantin Rushchanskii from the Institute of Solid State Physics at Forschungszentrum Jülich and Professor Nicola Spaldin from the University of California in Santa Barbara designed this ceramic, which has very special properties, in a virtual laboratory using the Jülich supercomputer JUROPA. The new europium barium titanate should enable measurements to be 10 times more sensitive than they were in the past. According to the Jülich physicists, "this could be sufficient to find the electric dipole moment of the electron."

As electric moment cannot be directly measured, the physicists are working together with scientists from the American Yale University as well as with Czech research institutions in Prague in order to indirectly prove its existence. The researchers in Yale have developed an experimental setup that uses an extremely sensitive SQUID magnetometer to measure the magnetization of the piece of ceramic in an electric field. Their aim is to demonstrate a change in the magnetization when the electric field is reversed. This would simultaneously be the sought-after evidence that the electric dipole moment exists.

In an electron, an electric dipole can only ever be oriented parallel or anti-parallel to the electron spin. In an electric field, most of the electrons are oriented so that their dipole moment is parallel to the field. Fewer are oriented in the other direction. This should lead to a measurable magnetization. If the electric field is reversed, the dipole moments of the electrons are reversed leading consequently to a simultaneous, measurable change in the magnetization. Without an electric dipole moment, on the other hand, the magnetization would remain unchanged.

"It would have been very difficult to find such a well-suited material by trial and error," said Ležaić. This material must have an unusual combination of properties: a high concentration of magnetic ions, magnetic disorder at temperatures below four degrees Kelvin and a reversible electric polarization. "Our colleagues in Yale who came up with the idea of the measurements and conducted them had already tested different materials. However, a new material with all of the necessary properties can be found faster with the use of theoretical analysis and computer simulations."

Ležaić, as the head of the young investigators group, her group member Rushchanskii, and her cooperation partner Spaldin virtually synthesized and analysed europium barium titanate on the supercomputer in Jülich. To do so, all they needed was its chemical composition and the basic equations of quantum mechanics. From these, they calculated the interaction between individual atoms and electrons and the local magnetic properties. So it was that they found the optimum ceramic.

Team colleagues in Prague have already synthesized and characterized the material in the laboratory and confirmed the properties calculated in Jülich. Only the sought-after dipole moment of the electron remains undiscovered. "Unwanted effects are still inhibiting the measurements," said a disappointed Ležaić. "But we're working intensively on improving the material even further."


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Z. Rushchanskii, S. Kamba, V. Goian, P. Vaněk, M. Savinov, J. Prokleška, D. Nuzhnyy, K. Knížek, F. Laufek, S. Eckel, S. K. Lamoreaux, A. O. Sushkov, M. Ležaić, N. A. Spaldin. A multiferroic material to search for the permanent electric dipole moment of the electron. Nature Materials, 2010; DOI: 10.1038/nmat2799

Cite This Page:

Helmholtz Association of German Research Centres. "Fourth property of electrons? Electric dipole moment would explain creation of universe." ScienceDaily. ScienceDaily, 20 July 2010. <www.sciencedaily.com/releases/2010/07/100720101349.htm>.
Helmholtz Association of German Research Centres. (2010, July 20). Fourth property of electrons? Electric dipole moment would explain creation of universe. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2010/07/100720101349.htm
Helmholtz Association of German Research Centres. "Fourth property of electrons? Electric dipole moment would explain creation of universe." ScienceDaily. www.sciencedaily.com/releases/2010/07/100720101349.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) — Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins