Featured Research

from universities, journals, and other organizations

Two catalysts made to work together: May lead to pharmaceuticals with less chemical waste

Date:
July 28, 2010
Source:
Northwestern University
Summary:
Much like two children in the back seat of a car, it can be challenging to get two catalysts to cooperate for the greater good. Now chemists have gotten two catalysts to work together -- something easily done by nature but a difficult thing to do in the laboratory. The findings will allow medicinal chemists to invent new reactions and produce valuable bioactive compounds faster with less impact on the environment.

Much like two children in the back seat of a car, it can be challenging to get two catalysts to cooperate for the greater good. Now Northwestern University chemists have gotten two catalysts to work together on the same task -- something easily done by nature but a difficult thing to do in the laboratory.

The findings, published by the journal Nature Chemistry, will allow medicinal chemists to invent new reactions and produce valuable bioactive compounds faster with less impact on the environment.

Catalysis is inherently green chemistry. Catalytic reactions typically employ a single molecule (a catalyst) to enhance a reaction or make a reaction possible that wouldn't otherwise be possible. Since a catalyst only needs to be used in very small amounts, the potential to control chemical processes while reducing waste makes catalysis very attractive. The Northwestern team wanted to see if they could turn a good thing -- a single catalyst -- into something even better by employing two catalysts.

"In our new approach, we discovered a pair of catalysts that work cooperatively to produce valuable compounds for biomedical research, which is important given the demand for new pharmaceuticals of all kinds," said senior author Karl A. Scheidt, the Irving M. Klotz Professor of Chemistry in the Weinberg College of Arts and Sciences. "Cooperative catalysis -- using two catalysts instead of just one -- will help us develop important compounds faster and with less waste. It also opens up an exciting new area of catalysis to explore."

Scheidt and his team started with simple stock chemicals and ended up with a number of compounds that are potentially bioactive and similar to each other. In the reaction, catalyst one (a magnesium salt that acts as an electron-deficient "Lewis acid") activates one molecule, and catalyst two (a mimic of thiamine, a carbene and an electron-rich "Lewis base") activates a second molecule simultaneously. The two activated substrates come together. The result is rapid, efficient and controlled production of large amounts of a molecule called gamma-lactam, a key building block for many pharmaceuticals.

On paper, the two catalysts should bind together and not be that effective as catalysts, but, it turns out, they don't interact that tightly. Instead, when there is a substrate for each catalyst, they work in tandem. Before this discovery, no one had identified an electron-deficient metal Lewis acid that works with a carbene. (A carbene is a highly reactive, transient molecule in which a carbon atom has only two bonds versus the normal four.)

"Nature employs a lot of catalysis -- to do such crucial biological transformations as acylations, oxidations and reductions, but it's hard to do what nature does in a flask," said Scheidt, director of Northwestern's Center for Molecular Innovation and Drug Discovery. "Getting two catalysts that are seemingly incompatible to work together is a significant advance. Now we have a great first step to realizing the full potential of this powerful cooperative catalysis strategy. Ultimately, this approach should allow chemists to combine simple components under catalytic conditions to generate new bioactive compounds of high value."

In addition to Scheidt, other authors of the paper are Dustin E. A. Raup, Benoit Cardinal-David and Dane Holte, all from Northwestern.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dustin E. A. Raup, Benoit Cardinal-David, Dane Holte & Karl A. Scheidt. Cooperative catalysis by carbenes and Lewis acids in a highly stereoselective route to %u03B3-lactams. Nature Chemistry, 18 July 2010 DOI: 10.1038/nchem.727

Cite This Page:

Northwestern University. "Two catalysts made to work together: May lead to pharmaceuticals with less chemical waste." ScienceDaily. ScienceDaily, 28 July 2010. <www.sciencedaily.com/releases/2010/07/100728092627.htm>.
Northwestern University. (2010, July 28). Two catalysts made to work together: May lead to pharmaceuticals with less chemical waste. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2010/07/100728092627.htm
Northwestern University. "Two catalysts made to work together: May lead to pharmaceuticals with less chemical waste." ScienceDaily. www.sciencedaily.com/releases/2010/07/100728092627.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins