Featured Research

from universities, journals, and other organizations

Physicists develop model that pushes limits of quantum theory, relativity

Date:
August 4, 2010
Source:
Syracuse University
Summary:
Physicists recently developed a new theoretical model to explain how the Pauli exclusion principle can be violated and how, under certain rare conditions, more than one electron can simultaneously occupy the same quantum state. Their model may help explain how matter behaves at the edges of black holes and contribute to the ongoing scientific quest for a unified theory of quantum gravity.

All of the matter in the universe -- everything we see, feel and smell -- has a certain predictable structure, thanks to the tiny electrons spinning around their atomic nuclei in a series of concentric shells or atomic levels. A fundamental tenet of this orderly structure is that no two electrons can occupy the same atomic level (quantum state) at the same time -- a principle called the Pauli exclusion principle, which is based on Albert Einstein's theory of relativity and quantum theory.

However, a team of Syracuse University physicists recently developed a new theoretical model to explain how the Pauli exclusion principle can be violated and how, under certain rare conditions, more than one electron can simultaneously occupy the same quantum state.

Their model, published July 26 in Physical Review Letters, may help explain how matter behaves at the edges of black holes and contribute to the ongoing scientific quest for a unified theory of quantum gravity. Physical Review Letters is a publication of the American Physical Society.

"Transitions of electrons from one atomic shell to another that violate the Pauli principle challenge the foundations of physics," says A.P. Balachandran, the J.D. Steele Professor of Physics in SU's College of Arts and Sciences. "For this reason, there is strong experimental interest in looking for such transitions. Until now, there were few viable models able to explain how such transitions can occur. Our theory provides such a model."

Balachandran is the lead author on the paper with Ph.D. candidates Anosh Joseph and Pramod Padmanabhan.

The orderly way in which electrons fill up atomic levels provides stability and structure to matter, as well as dictates the chemical properties of elements on the Periodic Table. Underlying this stability is the ability to pinpoint the location of objects (electrons, protons and neutrons) almost exactly in space and time. The new model posits that at the level where quantum gravity is significant, this picture of space-time continuum breaks down, deeply affecting the rotational symmetry of the atoms and triggering electron transitions (movement from one shell to another) that violate the Pauli principle.

"The Pauli principle is not obeyed in the model we built," Balachandran says. "We then used existing experimental evidence to put limits on when these violations in transitions can occur."

According to the model, violations of the Pauli principle would theoretically occur in nature in a time span that is longer than the age of the universe -- or less frequently than once in the proverbial "blue moon."

"Though this effect is small, scientists are using high-precision instruments to try to observe the effect," Balachandran says. "If found, it will profoundly affect the foundations of the current fundamental physical theories."

"Additionally, chemistry and biology in a world where such violations occur will be dramatically different," adds co-author Padmanabhan.

The fact that the Pauli principle can be violated may also help explain how matter behaves at the edge of black holes, Joseph says: "While we don't know what happens to matter in a black hole, our model may give hints about how matter behaves as atoms collapse from the gravitational pull of black holes."


Story Source:

The above story is based on materials provided by Syracuse University. The original article was written by Judy Holmes. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. P. Balachandran, Anosh Joseph, and Pramod Padmanabhan. Non-Pauli Transitions from Spacetime Noncommutativity. Physical Review Letters, 2010; 105 (5): 051601 DOI: 10.1103/PhysRevLett.105.051601

Cite This Page:

Syracuse University. "Physicists develop model that pushes limits of quantum theory, relativity." ScienceDaily. ScienceDaily, 4 August 2010. <www.sciencedaily.com/releases/2010/08/100803132742.htm>.
Syracuse University. (2010, August 4). Physicists develop model that pushes limits of quantum theory, relativity. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/08/100803132742.htm
Syracuse University. "Physicists develop model that pushes limits of quantum theory, relativity." ScienceDaily. www.sciencedaily.com/releases/2010/08/100803132742.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins