Featured Research

from universities, journals, and other organizations

Insular evolution: Large and big-footed voles in an outer archipelago

Date:
August 7, 2010
Source:
University of Helsinki
Summary:
According to evolutionary theory, natural selection favors traits that enhance dispersal of populations to new habitats. The empirical evidence supporting this theory, however, is relatively scarce. Scientists now report on the rapid evolution of traits facilitating dispersal in an outer archipelago.

According to evolutionary theory, natural selection favours traits that enhance dispersal of populations to new habitats. The empirical evidence supporting this theory, however, is relatively scarce. A study carried out by researchers from the Faculty of Biological and Environmental Sciences of the University of Helsinki, along with their Swedish colleagues, reports rapid evolution of traits facilitating dispersal in an outer archipelago.

The results was published August 4 in the Proceedings of the Royal Society B biological research journal.

Field research revealed that field voles (Microtus agrestis) in the outer archipelago of Stockholm are larger and have longer feet than those living on the mainland. The field voles included in the study were of the same descent, for their habitats emerged from the sea approximately 500 to 1000 years ago as a result of land elevation following the melting of the last glaciers. The islands were colonised by field voles that swam there from the mainland.

The researchers measured and weighed field voles in two mainland and six outer archipelago locations between 1983 and 1987. Then they reared descendants of field voles originating from the mainland and from the archipelago in a laboratory for three years. This was to ensure that the phenotypic differences (body size, foot length) were genetically determined and not caused by, for example, variability in food availability or other environmental conditions. The laboratory-reared descendants of insular voles also had large bodies and long feet. The rate of evolutionary change, measured in darwins, was remarkably rapid.

The results show that insular voles have genetically adapted, through natural selection, to survive in the harsh conditions of the outer archipelago. Their large body size and long feet facilitate dispersal by swimming. Their elongated hind feet enhance swimming ability by enabling better propulsion. Large individuals have better endurance and higher energy capacity for moving long distances in water and on land than small individuals. In addition, large individuals are less susceptible to hypothermia because of their body mass.

Field vole populations in the outer archipelago of Stockholm offered the researchers an excellent model system for testing theoretical predictions born out of evolutionary theory. Once again, the results illustrate and underline the significance of insular populations, such as those on the Galapagos Islands, to research in evolutionary biology. Divergent island populations are also valuable to biological diversity.


Story Source:

The above story is based on materials provided by University of Helsinki. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anders Forsman, Juha Merilδ and Torbjφrn Ebenhard. Phenotypic evolution of dispersal-enhancing traits in insular voles. Proc. R. Soc. B, August 4, 2010 DOI: 10.1098/rspb.2010.1325

Cite This Page:

University of Helsinki. "Insular evolution: Large and big-footed voles in an outer archipelago." ScienceDaily. ScienceDaily, 7 August 2010. <www.sciencedaily.com/releases/2010/08/100804080622.htm>.
University of Helsinki. (2010, August 7). Insular evolution: Large and big-footed voles in an outer archipelago. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2010/08/100804080622.htm
University of Helsinki. "Insular evolution: Large and big-footed voles in an outer archipelago." ScienceDaily. www.sciencedaily.com/releases/2010/08/100804080622.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) — A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) — Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) — Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins