Featured Research

from universities, journals, and other organizations

Image of new antibiotic in action opens up new opportunities to combat antibacterial resistance

Date:
August 6, 2010
Source:
Wellcome Trust
Summary:
Detailed pictures reveal how a new type of experimental antibiotic can kill bacteria that are already resistant to existing treatments. The findings could ultimately help scientists to develop new antibiotics to tackle the bacteria responsible for many hospital and community-acquired infections.

The topoisomerase enzyme helps DNA (green) to replicate and is a vital part of the bacteria's inner workings. Like a 'monkey wrench in the works' the new antibacterial (yellow) latches onto the enzyme and prevents it from performing its function.
Credit: Ben Bax

New detailed pictures reveal how a new type of experimental antibiotic can kill bacteria that are already resistant to existing treatments. The findings could ultimately help scientists to develop new antibiotics to tackle the bacteria responsible for many hospital and community-acquired infections.

Using an imaging technique called x-ray crystallography, a team of researchers from GlaxoSmithKline (GSK) captured a snapshot of the new compound latched on to the enzyme topoisomerase. This enzyme is part of the bacteria's internal machinery and helps the bacteria produce proteins and replicate. Stopping this enzyme prevents the bacteria from reproducing. Medicines, known as the quinolones, that target the enzyme have been used successfully as antibiotics since 1962, however bacteria are increasingly developing resistance to this class of drugs.

By looking at x-ray images, the team have demonstrated that the new investigational medicine attaches to the enzyme in a different place to the quinolones, enabling it to stop the same bacteria that are resistant to these older treatments. The research is published in the journal Nature, and is the result of two unique collaborations between GSK and the Wellcome Trust's Seeding Drug Discovery initiative and the U.S. Defense Threat Reduction Agency (DTRA).

"We already knew that targeting this enzyme was clinically proven to stop bacteria in their tracks, we just needed to be a bit more inventive in how we attacked it," said Michael Gwynn, from GSK's Infectious Diseases research group. "These images and the data showing the efficacy of this compound against a range of bacteria validate our approach, demonstrating that the enzyme can still be blocked even in bacteria already resistant to other antibiotics that work against this same enzyme."

The study also reports the potency of the new compound, called GSK 299423, against antibiotic-resistant strains of bacteria such as Staphylococus aureus, including methicillin resistance S. aureus (MRSA), and against gram negative bacteria like E. coli, Pseudomonas, Klebsiella and Acinetobacter. Gram-negative bacteria are particularly difficult to attack as they have an outer membrane surrounding the bacterial cell wall which interferes with drug penetration. New medicines must not only be toxic to the pathogen, but must first overcome the barriers to entry into the cell.

Commenting on the importance of the findings, Ted Bianco of the Wellcome Trust said: "This is an important step forward in the race against antibiotic resistance. By solving the new structure of this important bacterial enzyme, and understanding how these drugs work, the team has opened the door for targeted drug design of new antibiotics, which are urgently needed."

The particular compound from this study is one of a group that is currently being worked on in order to develop the best compounds in terms of efficacy and safety. This should help identify drug candidates that could be taken forward into early stage trials in humans.

Development of the new drug class to tackle gram-negative infections is supported as part of the Trust's Seeding Drug Discovery initiative. The collaboration provides GSK with a 4 million award from the Trust with GSK matching the contribution in staff, equipment, and other programme costs. The research collaborations with the Trust and with DTRA are aimed at developing an entirely new class of antibacterials to tackle hospital-acquired infections and potential bio-threat outbreaks.

"The Wellcome Trust has recently announced a five-year extension to the Seeding Drug Discovery initiative, enabling us to continue to support drug development in areas of unmet medical need," added Rick Davis, Business Development Manager at the Wellcome Trust.


Story Source:

The above story is based on materials provided by Wellcome Trust. Note: Materials may be edited for content and length.


Journal Reference:

  1. Benjamin D. Bax, Pan F. Chan, Drake S. Eggleston, Andrew Fosberry, Daniel R. Gentry, Fabrice Gorrec, Ilaria Giordano, Michael M. Hann, Alan Hennessy, Martin Hibbs, Jianzhong Huang, Emma Jones, Jo Jones, Kristin Koretke Brown, Ceri J. Lewis, Earl W. May, Martin R. Saunders, Onkar Singh, Claus E. Spitzfaden, Carol Shen, Anthony Shillings, Andrew F. Theobald, Alexandre Wohlkonig, Neil D. Pearson, Michael N. Gwynn. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 2010; DOI: 10.1038/nature09197

Cite This Page:

Wellcome Trust. "Image of new antibiotic in action opens up new opportunities to combat antibacterial resistance." ScienceDaily. ScienceDaily, 6 August 2010. <www.sciencedaily.com/releases/2010/08/100804133442.htm>.
Wellcome Trust. (2010, August 6). Image of new antibiotic in action opens up new opportunities to combat antibacterial resistance. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/08/100804133442.htm
Wellcome Trust. "Image of new antibiotic in action opens up new opportunities to combat antibacterial resistance." ScienceDaily. www.sciencedaily.com/releases/2010/08/100804133442.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins