Featured Research

from universities, journals, and other organizations

Higher temperatures to slow Asian rice production

Date:
August 10, 2010
Source:
University of California - San Diego
Summary:
Production of rice, the world's most important crop for ensuring food security, will be thwarted as temperatures increase in rice-growing areas with continued climate change, according to a new study. Researchers found evidence that the net impact of projected temperature increases will be to slow the growth of rice production in Asia. Rising temperatures during the past 25 years have already cut the yield growth rate by 10-20 percent in several locations.

Around three billion people eat rice every day, and more than 60 percent of the world's one billion poorest and undernourished people who live in Asia depend on rice as their staple food.
Credit: IRRI

Production of rice -- the world's most important crop for ensuring food security and addressing poverty -- will be thwarted as temperatures increase in rice-growing areas with continued climate change, according to a new study by an international team of scientists.

The research team found evidence that the net impact of projected temperature increases will be to slow the growth of rice production in Asia. Rising temperatures during the past 25 years have already cut the yield growth rate by 10-20 percent in several locations.

Published in the online early edition the week of Aug. 9, 2010 in Proceedings of the National Academy of Sciences, the report analyzed six years of data from 227 irrigated rice farms in six major rice-growing countries in Asia, which produces more than 90 percent of the world's rice.

"We found that as the daily minimum temperature increases, or as nights get hotter, rice yields drop," said Jarrod Welch, lead author of the report and graduate student of economics at the University of California, San Diego.

This is the first study to assess the impact of both daily maximum and minimum temperatures on irrigated rice production in farmer-managed rice fields in tropical and subtropical regions of Asia.

"Our study is unique because it uses data collected in farmers' fields, under real-world conditions," said Welch. "This is an important addition to what we already know from controlled experiments."

"Farmers can be expected to adapt to changing conditions, so real-world circumstances, and therefore outcomes, might differ from those in controlled experimental settings," he added.

Around three billion people eat rice every day, and more than 60 percent of the world's one billion poorest and undernourished people who live in Asia depend on rice as their staple food. A decline in rice production will mean more people will slip into poverty and hunger, the researchers said.

"Up to a point, higher day-time temperatures can increase rice yield, but future yield losses caused by higher night-time temperatures will likely outweigh any such gains because temperatures are rising faster at night," said Welch. "And if day-time temperatures get too high, they too start to restrict rice yields, causing an additional loss in production."

"If we cannot change our rice production methods or develop new rice strains that can withstand higher temperatures, there will be a loss in rice production over the next few decades as days and nights get hotter. This will get increasingly worse as temperatures rise further towards the middle of the century," he added.

In addition to Welch, other members of the research team are Professors Jeffrey Vincent of Duke University and Maximilian Auffhammer of the University of California, Berkeley; Ms. Piedad Moya and Dr. Achim Dobermann of the International Rice Research Institute (IRRI); and Dr. David Dawe of the Food and Agriculture Organization (FAO) of the United Nations.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Rex Graham. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jarrod R. Welch, Jeffrey R. Vincent, Maximilian Auffhammer, Piedad F. Moya, Achim Dobermann, and David Dawe. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1001222107

Cite This Page:

University of California - San Diego. "Higher temperatures to slow Asian rice production." ScienceDaily. ScienceDaily, 10 August 2010. <www.sciencedaily.com/releases/2010/08/100809161138.htm>.
University of California - San Diego. (2010, August 10). Higher temperatures to slow Asian rice production. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/08/100809161138.htm
University of California - San Diego. "Higher temperatures to slow Asian rice production." ScienceDaily. www.sciencedaily.com/releases/2010/08/100809161138.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins