Featured Research

from universities, journals, and other organizations

On organic coffee farm, complex interactions keep pests under control

Date:
August 27, 2010
Source:
University of Michigan
Summary:
Proponents of organic farming often speak of nature's balance in ways that sound almost spiritual, prompting criticism that their views are unscientific and naive. At the other end of the spectrum are those who see farms as battlefields where insect pests and plant diseases must be vanquished with the magic bullets of modern agriculture: pesticides, fungicides and the like.

Azteca and other ant species also attack coffee berry borers, which burrow into coffee fruit and cause fruit rot.
Credit: John Vandermeer; Copyright The Regents of the University of Michigan

Proponents of organic farming often speak of nature's balance in ways that sound almost spiritual, prompting criticism that their views are unscientific and naοve. At the other end of the spectrum are those who see farms as battlefields where insect pests and plant diseases must be vanquished with the magic bullets of modern agriculture: pesticides, fungicides and the like.

Related Articles


Which view is more accurate? A 10-year study of an organic coffee farm in Mexico suggests that, far from being romanticized hooey, the "balance and harmony" view is on the mark. Ecologists John Vandermeer and Ivette Perfecto of the University of Michigan and Stacy Philpott of the University of Toledo have uncovered a web of intricate interactions that buffers the farm against extreme outbreaks of pests and diseases, making magic bullets unnecessary. Their research is described in the July/August issue of the journal BioScience.

The major players in the system -- several ant species, a handful of coffee pests, and the predators, parasites and diseases that affect the pests -- not only interact directly, but some species also exert subtle, indirect effects on others, effects that might have gone unnoticed if the system had not been studied in detail.

A key species in the complex web is the tree-nesting Azteca ant (Azteca instabilis). The ants aren't particular about the kind of tree they live in, but for some reason their nests are found in only about 3 percent of shade trees on the farm, and ant-inhabited trees aren't randomly distributed -- they're found in clumps.

The researchers believe the clumpiness results, at least in part, from the ants' vulnerability to a parasitic fly. Ant colonies expand by sending off queens and broods to nearby trees, but when all the trees in an area have ant nests, the flies can more easily find ants to parasitize. So high-density clusters are preferentially attacked and eventually disappear, either because the ants all die or because the ants move to other trees.

The ants have a cozier relationship with the green coffee scale, a flat, featureless insect that is a serious coffee pest in some regions, but not on the farm where the study was done. Azteca protects the scale from predators and parasites in return for honeydew, a sweet, sticky liquid the scale secretes. One of those predators is the lady beetle (Azya orbigera), whose adult and larval forms both feed on scale. When an adult beetle tries to attack a scale insect, the ants chase it away. But beetle larvae, which are covered with waxy gunk that gums up the ants' mouthparts, are able to polish off plenty of scale. The ants even aid the murderous larvae, albeit inadvertently. In the course of shooing off parasitic wasps that attack scale, the ants also scare away bugs that parasitize beetle larvae.

The beetles also seem to influence the ants' distribution patterns by preying on the scale, on which the ants depend for honeydew. The researchers explored the relationship using theoretical modeling and found that if ants take over the whole plantation, the beetle goes extinct because adult beetles can't get enough to eat. If the ants disappear from the farm, the beetles go extinct because the larvae starve. But if ants are confined to clusters, due to the influences of both beetles and parasitic flies, the beetles thrive and keep the scale insects under control.

"The interesting thing is that the beetles could not exist except for the highly patterned ant population, but it could be those very same beetles causing the pattern formation in the first place," said Vandermeer, who is the Asa Gray Distinguished University Professor of Ecology and Evolutionary Biology. "The beetle creates the conditions for its own survival."

The white halo fungus, a disease of scale insects, also enters in. The disease occurs here and there throughout the farm but runs rampant only where large populations of scale are found, which is only where the ants are protecting the scale. By suppressing the scale, on which the ants depend for honeydew, the fungus indirectly affects the ants' survival. But that's not all: The fungus also attacks coffee rust, a notorious pest that virtually wiped out coffee production in Sri Lanka (previously known as Ceylon), Java and Sumatra in the mid-19th century and has since infiltrated Central and South America but has not caused serious problems in those areas. White halo fungus only works its magic against coffee rust, however, in the process of conducting major assaults on scale, and those assaults happen only where there's lots of scale -- in other words, where the scale is under ants' protection.

In addition to Azteca, other ant species protect scale, and some of these ants are predators of the coffee berry borer and leaf miner, which are also coffee pests. The researchers are still working out the details of the relationships among the various ants and the other species with which they interact.

As the research team continues to discover more species that are part of the web and more complex direct and indirect interactions among all the members, it's increasingly clear that the "naοve" view of nature working in harmony closely matches the scientific facts.

"There are many farmers in the tropics who have been on their land for a long time -- sometimes many generations -- and have seen these things happening and intuitively understand the connections," said Vandermeer. "The stories they tell about the balance of nature sound almost romantic and religious sometimes, but if you just change the words, they start sounding like what we're describing."

Though this study is being done within the confines of a 300-hectare (740 acre) farm in southern Mexico, the researchers believe their approach and findings are more broadly applicable.

"Our view is that interaction webs of this sort will prove common in agro-ecosystems in general," said Perfecto, professor of ecology and natural resources. "Although widely appreciated in natural systems, such webs haven't been seen in agro-ecosystems because the people studying them haven't looked at them in this way. They're looking for magic-bullet solutions; they want to find the thing that causes the problem and then fix it. Our approach is to understand systems that are working well, where there are no problems. By doing that, we can define systems that are more resilient and resistant to pest outbreaks."


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vandermeer et al. Ecological Complexity and Pest Control in Organic Coffee Production: Uncovering an Autonomous Ecosystem Service. BioScience, 2010; 60 (7): 527 DOI: 10.1525/bio.2010.60.7.8

Cite This Page:

University of Michigan. "On organic coffee farm, complex interactions keep pests under control." ScienceDaily. ScienceDaily, 27 August 2010. <www.sciencedaily.com/releases/2010/08/100826122620.htm>.
University of Michigan. (2010, August 27). On organic coffee farm, complex interactions keep pests under control. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2010/08/100826122620.htm
University of Michigan. "On organic coffee farm, complex interactions keep pests under control." ScienceDaily. www.sciencedaily.com/releases/2010/08/100826122620.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) — Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins