Featured Research

from universities, journals, and other organizations

Transition metal catalysts could be key to origin of life, scientists report

Date:
September 6, 2010
Source:
Marine Biological Laboratory
Summary:
Scientists propose that an overlooked type of biological catalyst -- metal-ligand complexes -- could have jump-started metabolism and life itself, deep in hydrothermal ocean vents.

Ferric citrate is a structure formed from the transition metal iron and citrate, a compound produced by plants, algae, and many bacteria. Morowitz and his colleagues propose that structures like this could have catalyzed the formation of molecular building blocks, leading ultimately to the formation of complex molecules essential for the origin of life.
Credit: Harold Morowitz, George Mason University

One of the big, unsolved problems in explaining how life arose on Earth is a chicken-and-egg paradox: How could the basic biochemicals -- such as amino acids and nucleotides -- have arisen before the biological catalysts (proteins or ribozymes) existed to carry out their formation?

Related Articles


In a paper appearing in the current issue of The Biological Bulletin, scientists propose that a third type of catalyst could have jumpstarted metabolism and life itself, deep in hydrothermal ocean vents.

According to the scientists' model, which is experimentally testable, molecular structures involving transition metal elements (iron, copper, nickel, etc.) and ligands (small organic molecules) could have catalyzed the synthesis of basic biochemicals (monomers) that acted as building blocks for more complex molecules, leading ultimately to the origin of life. The model has been put forth by Harold Morowitz of George Mason University (GMU), Vijayasarathy Srinivasan of GMU, and Eric Smith of the Santa Fe Institute.

"There has been a big problem in the origin of life (theory) for the last 50 years in that you need large protein molecules to be catalysts to make monomers, but you need monomers to make the catalysts," Morowitz says. However, he suggests, "You can start out with these small metal-ligand catalysts, and they'll build up the monomers that can be used to make the (large protein catalysts)."

A transition metal atom can act as the core of a metal-ligand complex, in which it is bound to and surrounded by other ligands. Morowitz and his colleagues propose that simple transition metal-ligand complexes in hydrothermal ocean vents catalyzed reactions that gave rise to more complex molecules. These increasingly complex molecules then acted as ligands in increasingly efficient transition metal-ligand complex catalysts. Gradually, the basic molecular ingredients of metabolism accumulated and were able to self-organize into networks of chemical reactions that laid the foundation for life.

"We used to think if we could understand what carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur were doing, we would immediately be able to understand biology," Morowitz says, listing elements that constitute a large proportion of Earth's biomass. "But now we're finding that these other fairly rare elements, transition metals, are necessary in biology, so we ask, 'What was their role in the origin of life?'"

The proposal suggests that the rise of life forms is a natural consequence of the unique properties of transition metals and ligand field theory, which describes the characteristics of ligand complexes.

"The idea has emerged from a study of the periodic table. We strongly feel that unless you're able to see how life comes about in some formal chemical way, you're never really going to solve the problem," Morowitz says.

Morowitz and his colleagues are preparing experiments to test the catalytic properties of transition metal-ligand complexes built with different types of ligands. Ligands known to bind tightly to transition metals include molecules produced during the course of the reductive citric acid cycle, a series of biochemical reactions essential for many microorganisms.

"We think life probably began with the reductive citric acid cycle, and there is evidence that under hydrothermal vent conditions some of the cycle's intermediates form," Morowitz says. "We are going to start with these molecules and mix them with various transition metals, cook them at different temperatures for a while, and see what kinds of catalysts we've made."

Such experiments could reveal what kinds of catalytic reactions took place to lay the foundations for life. The hypothesis also allows for the possibility that life could have arisen more than once.

"Life could have originated multiples times, and, if we find life elsewhere in the universe, it could be very similar to the life we know here because it will be based on the same transition metals and ligands," Morowitz says. "It's a conjecture at the moment, but it could become a formal scientific core for the emergence of life."


Story Source:

The above story is based on materials provided by Marine Biological Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Morowitz, H. J., Srinivasan, V., Smith, E. Ligand Field Theory and the Origin of Life as an Emergent Feature of the Periodic Table of Elements. The Biological Bulletin, 219: 1-6 [link]

Cite This Page:

Marine Biological Laboratory. "Transition metal catalysts could be key to origin of life, scientists report." ScienceDaily. ScienceDaily, 6 September 2010. <www.sciencedaily.com/releases/2010/09/100903210416.htm>.
Marine Biological Laboratory. (2010, September 6). Transition metal catalysts could be key to origin of life, scientists report. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/09/100903210416.htm
Marine Biological Laboratory. "Transition metal catalysts could be key to origin of life, scientists report." ScienceDaily. www.sciencedaily.com/releases/2010/09/100903210416.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ruins Thought To Be Port Actually Buried Greek City

Ruins Thought To Be Port Actually Buried Greek City

Newsy (Nov. 24, 2014) Media is calling it an "underwater Pompeii." Researchers have found ruins off the coast of Delos. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins