Featured Research

from universities, journals, and other organizations

Termites foretell climate change in Africa's savannas

Date:
September 8, 2010
Source:
Carnegie Institution
Summary:
Using sophisticated airborne imaging and structural analysis, scientists mapped more than 40,000 termite mounds over 192 square miles in the African savanna. They found that their size and distribution is linked to vegetation and landscape patterns associated with annual rainfall. The results reveal how the savanna terrain has evolved and show how termite mounds can be used to predict ecological shifts from climate change.

Huge termite mound in Namibia.
Credit: iStockphoto

Using sophisticated airborne imaging and structural analysis, scientists at the Carnegie Institution's Department of Global Ecology mapped more than 40,000 termite mounds over 192 square miles in the African savanna. They found that their size and distribution is linked to vegetation and landscape patterns associated with annual rainfall. The results reveal how the savanna terrain has evolved and show how termite mounds can be used to predict ecological shifts from climate change.

Related Articles


The research is published in the September 7, 2010, advanced online edition of Nature Communications.

Mound-building termites in the study area of Kruger National Park in South Africa tend to build their nests in areas that are not too wet, nor too dry, but are well drained, and on slopes of savanna hills above boundaries called seeplines. Seeplines form where water has flowed belowground through sandy, porous soil and backs up at areas rich in clay. Typically woody trees prefer the well-drained upslope side where the mounds tend to locate, while grasses dominate the wetter areas down slope.

"These relationships make the termite mounds excellent indicators of the geology, hydrology, and soil conditions," commented lead author Shaun Levick at Carnegie. "And those conditions affect what plants grow and thus the entire local ecosystem. We looked at the mound density, size, and location on the hills with respect to the vegetation patterns."

Most research into the ecology of these savannas has focused on the patterns of woody trees and shorter vegetation over larger, regional scales. Work at the smaller, hill-slope scales has, until now, been limited to 2-dimensional studies on specific hillsides. The Carnegie research was conducted by the Carnegie Airborne Observatory (CAO)-a unique airborne mapping system that operates much like a diagnostic medical scan. It can penetrate the canopy all the way to the soil level and probe about 40,000 acres per day. The CAO uses a waveform LiDAR system (light detection and ranging) that maps the 3-dimensional structure of vegetation and, in this case, termite mounds and combines that information with spectroscopic imaging -- imaging that reveals chemical fingerprints of the species below. It renders the data in stunning 3-D maps.

"We looked at the vegetation and termite mound characteristics throughout enormous areas of African savanna in dry, intermediate, and wet zones," explained Levick. "We found that precipitation, along with elevation, hydrological, and soil conditions determine whether the area will be dominated by grasses or woody vegetation and the size and density of termite mounds."

The advantage of monitoring termite mounds in addition to vegetation is that mounds are so tightly coupled with soil and hydrological conditions that they make it easier to map the hill slope seeplines. Furthermore, vegetation cover varies a lot between wet and dry season, while the mounds are not subject to these fluctuations.

"By understanding the patterns of the vegetation and termite mounds over different moisture zones, we can project how the landscape might change with climate change," explained co-author Greg Asner at Carnegie. "Warming is expected to increase the variability of future precipitation in African savannas, so some areas will get more, while others get less rain. The predictions are that many regions of the savanna will become drier, which suggests more woody species will encroach on today's grasslands. These changes will depend on complex but predictable hydrological processes along hill slopes, which will correspond to pattern changes in the telltale termite mounds we see today from the air."

This research was funded by a grant from the Andrew Mellon Foundation. The Carnegie Airborne Observatory is supported by the W.M. Keck Foundation and William Hearst, III. SANParks provided logistical support.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shaun R. Levick, Gregory P. Asner, Oliver A. Chadwick, Lesego M. Khomo, Kevin H. Rogers, Anthony S. Hartshorn, Ty Kennedy-Bowdoin, David E. Knapp. Regional insight into savanna hydrogeomorphology from termite mounds. Nature Communications, 2010; 1 (6): 1 DOI: 10.1038/ncomms1066

Cite This Page:

Carnegie Institution. "Termites foretell climate change in Africa's savannas." ScienceDaily. ScienceDaily, 8 September 2010. <www.sciencedaily.com/releases/2010/09/100907113038.htm>.
Carnegie Institution. (2010, September 8). Termites foretell climate change in Africa's savannas. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/09/100907113038.htm
Carnegie Institution. "Termites foretell climate change in Africa's savannas." ScienceDaily. www.sciencedaily.com/releases/2010/09/100907113038.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins