Featured Research

from universities, journals, and other organizations

Simpler mathematical model for reproducing bacterial growth patterns developed

Date:
September 15, 2010
Source:
Universidad de Barcelona
Summary:
The expansion of bacterial colonies is one of the classic research areas in biology. Researchers now consider a new model that uses two parameters to reproduce the growth patterns of these microorganisms.

One of the most commonly observed growth patterns in bacterial colonies consists of concentric rings.
Credit: Image courtesy of Universidad de Barcelona

The expansion of bacterial colonies is one of the classic research areas in biology. In a recent study, Ignasi Pagonabarraga, from the UB Department of Fundamental Physics, and researchers from the University of Edinburgh consider a new model that uses two parameters to reproduce the growth patterns of these microorganisms.

Related Articles


The mathematical model described in the study, which has been published in the Proceedings of the National Academy of Science (PNAS), takes into account the basic movements of which bacteria are capable: motility, directional movement and diffusion, which is less regular and harder to model. "Eventually we decided on two adimensional parameters that describe the way motility changes according to aspects such as the density of the bacteria and the rate of diffusion," explains Pagonabarraga. Current research into bacterial growth is based on the combined evolution of bacterial density and chemical stimulants and requires up to ten parameters to be adjusted.

In nature, bacteria are often found concentrated on surfaces in structures that form spectaular patterns viewable under a microscope. In the laboratory, these patterns can be reproduced in a Petri dish containing agar gel, which acts as a culture. The specialist biologists behind the study have developed a series of equations that account for the changes in directional movement in response to chemical stimuli such as food sources, in a phenomenon known as chemotaxis. As Pagonabarraga explains, "The model we propose does not take into account chemotaxis but does predict the formation of patterns that are surprisingly similar to those considered to reflect chemotactic behaviour." The two parameters have a physical component, allowing them to be adjusted for use in future experiments.

One of the most commonly observed growth patterns in bacterial colonies consists of concentric rings. Patterns of this type can be predicted by taking into account that bacterial motility changes according to density. This change causes the bacteria to separate into two phases of different thicknesses due to the coexistence of two densities. Cell division is predominant in the regions with lower density and cell death in the denser regions. The development of simplified models that identify a minimum number of parameters for describing the growth patterns observed under experimental conditions will facilitate identification of the basic mechanisms underlying bacterial dynamics.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. E. Cates, D. Marenduzzo, I. Pagonabarraga, J. Tailleur. From the Cover: Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proceedings of the National Academy of Sciences, 2010; 107 (26): 11715 DOI: 10.1073/pnas.1001994107

Cite This Page:

Universidad de Barcelona. "Simpler mathematical model for reproducing bacterial growth patterns developed." ScienceDaily. ScienceDaily, 15 September 2010. <www.sciencedaily.com/releases/2010/09/100915084803.htm>.
Universidad de Barcelona. (2010, September 15). Simpler mathematical model for reproducing bacterial growth patterns developed. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2010/09/100915084803.htm
Universidad de Barcelona. "Simpler mathematical model for reproducing bacterial growth patterns developed." ScienceDaily. www.sciencedaily.com/releases/2010/09/100915084803.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins