Featured Research

from universities, journals, and other organizations

Simpler mathematical model for reproducing bacterial growth patterns developed

Date:
September 15, 2010
Source:
Universidad de Barcelona
Summary:
The expansion of bacterial colonies is one of the classic research areas in biology. Researchers now consider a new model that uses two parameters to reproduce the growth patterns of these microorganisms.

One of the most commonly observed growth patterns in bacterial colonies consists of concentric rings.
Credit: Image courtesy of Universidad de Barcelona

The expansion of bacterial colonies is one of the classic research areas in biology. In a recent study, Ignasi Pagonabarraga, from the UB Department of Fundamental Physics, and researchers from the University of Edinburgh consider a new model that uses two parameters to reproduce the growth patterns of these microorganisms.

The mathematical model described in the study, which has been published in the Proceedings of the National Academy of Science (PNAS), takes into account the basic movements of which bacteria are capable: motility, directional movement and diffusion, which is less regular and harder to model. "Eventually we decided on two adimensional parameters that describe the way motility changes according to aspects such as the density of the bacteria and the rate of diffusion," explains Pagonabarraga. Current research into bacterial growth is based on the combined evolution of bacterial density and chemical stimulants and requires up to ten parameters to be adjusted.

In nature, bacteria are often found concentrated on surfaces in structures that form spectaular patterns viewable under a microscope. In the laboratory, these patterns can be reproduced in a Petri dish containing agar gel, which acts as a culture. The specialist biologists behind the study have developed a series of equations that account for the changes in directional movement in response to chemical stimuli such as food sources, in a phenomenon known as chemotaxis. As Pagonabarraga explains, "The model we propose does not take into account chemotaxis but does predict the formation of patterns that are surprisingly similar to those considered to reflect chemotactic behaviour." The two parameters have a physical component, allowing them to be adjusted for use in future experiments.

One of the most commonly observed growth patterns in bacterial colonies consists of concentric rings. Patterns of this type can be predicted by taking into account that bacterial motility changes according to density. This change causes the bacteria to separate into two phases of different thicknesses due to the coexistence of two densities. Cell division is predominant in the regions with lower density and cell death in the denser regions. The development of simplified models that identify a minimum number of parameters for describing the growth patterns observed under experimental conditions will facilitate identification of the basic mechanisms underlying bacterial dynamics.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. E. Cates, D. Marenduzzo, I. Pagonabarraga, J. Tailleur. From the Cover: Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proceedings of the National Academy of Sciences, 2010; 107 (26): 11715 DOI: 10.1073/pnas.1001994107

Cite This Page:

Universidad de Barcelona. "Simpler mathematical model for reproducing bacterial growth patterns developed." ScienceDaily. ScienceDaily, 15 September 2010. <www.sciencedaily.com/releases/2010/09/100915084803.htm>.
Universidad de Barcelona. (2010, September 15). Simpler mathematical model for reproducing bacterial growth patterns developed. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/09/100915084803.htm
Universidad de Barcelona. "Simpler mathematical model for reproducing bacterial growth patterns developed." ScienceDaily. www.sciencedaily.com/releases/2010/09/100915084803.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins