Featured Research

from universities, journals, and other organizations

Muscle gene may provide new treatments for obesity and diabetes

Date:
September 21, 2010
Source:
Rockefeller University
Summary:
Skeletal muscle enables us to walk, run or play a musical instrument, but it also plays a crucial role in controlling disease. Scientists have now shown how a specific molecule in skeletal muscle regulates energy expenditure, a finding that may lead to new treatments for certain muscle diseases as well as diabetes, obesity and heart disease.

Skeletal muscle enables us to walk, run or play a musical instrument, but it also plays a crucial role in controlling disease. Rockefeller University scientists have now shown how a specific molecule in skeletal muscle regulates energy expenditure, a finding that may lead to new treatments for certain muscle diseases as well as diabetes, obesity and heart disease.

The researchers, led by Wei Chen, a research associate in the Laboratory of Biochemistry and Molecular Biology, focused on a protein called MED1, which makes up part of a gene regulating machine called the Mediator coactivator complex. MED1 anchors the Mediator to an array of receptors in the cell nucleus that activate genes, and it performs crucial functions in a variety of cells and tissue types, including development of the mammary gland and fat tissues and the oxidation of fatty acids in the liver.

In the new study, Chen and her colleagues focused on MED1's role in skeletal muscle. The researchers created a line of mice genetically modified to lack MED1 only in muscle cells. They found that the Med1 knockout mice had enhanced sensitivity to insulin and improved glucose tolerance and also resisted becoming obese even when fed a high-fat diet. Gene microarray analysis showed that when Med1 was deleted, a number of genes that are usually suppressed were activated, says Chen.

"In muscle, MED1 normally suppresses a genetic program that holds in check certain energy expenditure pathways," says Robert G. Roeder, Arnold and Mabel Beckman Professor and head of the Laboratory of Biochemistry and Molecular Biology. "We found that these genes are unleashed when MED1 function is abrogated."

One of these genes is UCP-1, which produces a key protein that works in certain fat cells to generate heat when animals are exposed to cold. The researchers also found that MED1 plays a role in development of muscle fibers. Muscle is composed of two kinds of fiber, called slow and fast twitch. Slow twitch fibers contract slowly and can keep going for a long time, while fast twitch muscle fibers contract quickly, but get tired sooner. Removing Med1 caused the muscles to switch from fast to slow twitch fibers, which the researchers think may contribute to the animals' enhanced tolerance to glucose and sensitivity to insulin.

Chen and her colleagues also observed that some muscle in the Med1 knockout mice had an increase in the density of mitochondria, which provide energy to cells, a finding which suggests that targeting Med1 could provide new treatments for muscle diseases caused by malfunctioning mitochondria, including some types of epilepsy.

"Taken together, these dramatic results raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions," says Chen.

Proceedings of the National Academy of Sciences 107: 10196-10201 (June 1, 2010) A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism Wei Chen, Xiaoting Zhang, Kivanc Birsoy and Robert G. Roeder


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. Chen, X. Zhang, K. Birsoy, R. G. Roeder. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism. Proceedings of the National Academy of Sciences, 2010; 107 (22): 10196 DOI: 10.1073/pnas.1005626107

Cite This Page:

Rockefeller University. "Muscle gene may provide new treatments for obesity and diabetes." ScienceDaily. ScienceDaily, 21 September 2010. <www.sciencedaily.com/releases/2010/09/100920211748.htm>.
Rockefeller University. (2010, September 21). Muscle gene may provide new treatments for obesity and diabetes. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2010/09/100920211748.htm
Rockefeller University. "Muscle gene may provide new treatments for obesity and diabetes." ScienceDaily. www.sciencedaily.com/releases/2010/09/100920211748.htm (accessed April 23, 2014).

Share This



More Plants & Animals News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Leopard Bites Man in India

Raw: Leopard Bites Man in India

AP (Apr. 22, 2014) A leopard caused panic in the city of Chandrapur on Monday when it sprung from the roof of a house and charged at rescue workers. (April 22) Video provided by AP
Powered by NewsLook.com
Iowa College Finds Beauty in Bulldogs

Iowa College Finds Beauty in Bulldogs

AP (Apr. 22, 2014) Drake University hosts 35th annual Beautiful Bulldog Contest. (April 21) Video provided by AP
Powered by NewsLook.com
805-Pound Shark Caught Off The Coast Of Florida

805-Pound Shark Caught Off The Coast Of Florida

Newsy (Apr. 22, 2014) One Florida fisherman caught a 805-pound shark off the coast of Florida earlier this month. Video provided by Newsy
Powered by NewsLook.com
Breakfast Foods Are Getting Pricier

Breakfast Foods Are Getting Pricier

AP (Apr. 21, 2014) Breakfast is now being served with a side of sticker shock. The cost of morning staples like bacon, coffee and orange juice is on the rise because of global supply problems. (April 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins