Featured Research

from universities, journals, and other organizations

New level of control for the heart beat

Date:
September 28, 2010
Source:
Journal of Clinical Investigation
Summary:
The heart beat, nerve cell communication, and skeletal muscle function are all controlled by channels in the cell membrane that regulate the movement of sodium ions (Na+). Mutations in these so called voltage-gated Na+ channels result in forms of epilepsy and heart conditions such as long QT syndrome that are characterized by an irregular heart beat.

The heart beat, nerve cell communication, and skeletal muscle function are all controlled by channels in the cell membrane that regulate the movement of sodium ions (Na+). Mutations in these so called voltage-gated Na+ channels result in forms of epilepsy and heart conditions such as long QT syndrome that are characterized by an irregular heart beat.

New research, conducted by a team of investigators led by Peter Mohler and Thomas Hund, at the University of Iowa Carver College of Medicine, Iowa City, has now identified a multifunctional regulatory platform for voltage-gated Na+ channels in mice.

In the study, the structural protein beta-IV-spectrin was found to be part of the multi-protein complex containing the predominant voltage-gated Na+ channel in heart muscle cells in mice. Further, beta-IV-spectrin recruited to the multi-protein complex the protein CaMKII, which in turn modified the voltage-gated Na+ channel, modulating its function. In the presence of mutant forms of beta-IV-spectrin, the function of the voltage-gated Na+ channel in the heart was impaired and the mice exhibited an abnormal heart beat. As discussed by Robert Kass and Kevin Sampson, at Columbia University, New York, in an accompanying commentary, these data provide new insight into the control of the heart beat and might provide new therapeutic targets.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thomas J. Hund, Olha M. Koval, Jingdong Li, Patrick J. Wright, Lan Qian, Jedidiah S. Snyder, Hjalti Gudmundsson, Crystal F. Kline, Nathan P. Davidson, Natalia Cardona, Matthew N. Rasband, Mark E. Anderson, Peter J. Mohler. A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. Journal of Clinical Investigation, 2010; DOI: 10.1172/JCI43621

Cite This Page:

Journal of Clinical Investigation. "New level of control for the heart beat." ScienceDaily. ScienceDaily, 28 September 2010. <www.sciencedaily.com/releases/2010/09/100927122217.htm>.
Journal of Clinical Investigation. (2010, September 28). New level of control for the heart beat. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/09/100927122217.htm
Journal of Clinical Investigation. "New level of control for the heart beat." ScienceDaily. www.sciencedaily.com/releases/2010/09/100927122217.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins