Featured Research

from universities, journals, and other organizations

'Gold' fish thrive, cancers die

Date:
September 28, 2010
Source:
Rice University
Summary:
Physicists have demonstrated that plasmonic nanobubbles, generated around gold nanoparticles with a laser pulse, can detect and destroy cancer cells in vivo by creating tiny, shiny vapor bubbles that reveal the cells and selectively explode them.

A set of images shows: A) a differential interference contrast (DIC) white light image of zebrafish embryo labeled with fluorescent human prostate cancer cells; B) a fluorescent image of the embryo in A, revealing the xenografted cancer cells; C) a high-magnification DIC image of the ventral tail fin; D) a fluorescent image of the same region in C that reveals xenografted cells (arrowhead); and E) a merged image of C and D.
Credit: Wagner Lab/Rice University

Rice University physicist Dmitri Lapotko has demonstrated that plasmonic nanobubbles, generated around gold nanoparticles with a laser pulse, can detect and destroy cancer cells in vivo by creating tiny, shiny vapor bubbles that reveal the cells and selectively explode them.

Related Articles


A paper in the October print edition of the journal Biomaterials details the effect of plasmonic nanobubble theranostics on zebra fish implanted with live human prostate cancer cells, demonstrating the guided ablation of cancer cells in a living organism without damaging the host.

Lapotko and his colleagues developed the concept of cell theranostics to unite three important treatment stages -- diagnosis, therapy and confirmation of the therapeutic action -- into one connected procedure. The unique tunability of plasmonic nanobubbles makes the procedure possible. Their animal model, the zebra fish, is nearly transparent, which makes it ideal for such in vivo research.

In earlier research in Lapotko's home lab in the National Academy of Sciences of Belarus, plasmonic nanobubbles demonstrated their theranostic potential. In another study on cardiovascular applications, nanobubbles were filmed blasting their way through arterial plaque. The stronger the laser pulse, the more damaging the explosion when the bubbles burst, making the technique highly tunable. The bubbles range in size from 50 nanometers to more than 10 micrometers.

In the zebra-fish study, Lapotko and his collaborators at Rice directed antibody-tagged gold nanoparticles into the implanted cancer cells. A short laser pulse overheated the surface of the nanoparticles and evaporated a very thin volume of the surrounding medium to create small vapor bubbles that expanded and collapsed within nanoseconds; this left cells undamaged but generated a strong optical scattering signal that was bright enough to detect a single cancer cell.

A second, stronger pulse generated larger nanobubbles that exploded (or, as the researchers called it, "mechanically ablated") the target cell without damaging surrounding tissue in the zebra fish. Scattering of the laser light by the second "killer" bubble confirmed the cellular destruction.

That the process is mechanical in nature is key, Lapotko said. The nanobubbles avoid the pitfalls of chemo- or radiative therapy that can damage healthy tissue as well as tumors.

"It's not a particle that kills the cancer cell, but a transient and short event," he said. "We're converting light energy into mechanical energy."

The National Institutes of Health has recognized the potential of Lapotko's inspired technique by funding further research that holds tremendous potential for the theranostics of cancer and other diseases at the cellular level. Lapotko's Plasmonic Nanobubble Lab, a joint American-Belarussian laboratory for fundamental and biomedical nanophotonics, has received a grant worth more than $1 million over the next four years to continue developing the technique.

The new grant will allow Lapotko and his collaborators to study the biological effects of plasmonic nanobubbles and then combine their functions into a single sequence that would take a mere microsecond to detect and destroy a cancer cell and confirm the results. "By tuning their size dynamically, we will tune their biological action from noninvasive sensing to localized intracellular drug delivery to selective elimination of specific cells," he said.

"Being a stealth, on-demand probe with tunable function, the plasmonic nanobubble can be applied to all areas of medicine, since the nanobubble mechanism is universal and can be employed for detecting and manipulating specific molecules, or for precise microsurgery."

Lapotko's co-authors on the Biomaterials paper are Daniel Wagner, assistant professor of biochemistry and cell biology; Mary "Cindy" Farach-Carson, associate vice provost for research and professor of biochemistry and cell biology; Jason Hafner, associate professor of physics and astronomy and of chemistry; Nikki Delk, postdoctoral research associate; and Ekaterina Lukianova-Hleb, researcher in the Plasmonic Nanobubble Lab.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel S. Wagner, Nikki A. Delk, Ekaterina Y. Lukianova-Hleb, Jason H. Hafner, Mary C. Farach-Carson, Dmitri O. Lapotko. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials, 2010; 31 (29): 7567 DOI: 10.1016/j.biomaterials.2010.06.031

Cite This Page:

Rice University. "'Gold' fish thrive, cancers die." ScienceDaily. ScienceDaily, 28 September 2010. <www.sciencedaily.com/releases/2010/09/100927155326.htm>.
Rice University. (2010, September 28). 'Gold' fish thrive, cancers die. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/09/100927155326.htm
Rice University. "'Gold' fish thrive, cancers die." ScienceDaily. www.sciencedaily.com/releases/2010/09/100927155326.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins