Featured Research

from universities, journals, and other organizations

Oldest evidence of dinosaurs in footprints: Dinosaur lineage emerged soon after massive Permian extinction

Date:
October 6, 2010
Source:
American Museum of Natural History
Summary:
Scientists have found the oldest evidence of the dinosaur lineage -- fossilized tracks. Just one or two million years after the massive Permian-Triassic extinction, an animal smaller than a house cat walked across fine mud in what is now Poland.

Top: This is a reconstruction of cat-sized stem dinosaur Prorotodactylus isp. found in Stryczowice, Poland that was a quadruped with a dinosaur-like gait and orientation of the toes. Bottom: The 250 million year old footprints of Prorotodactylus isp. from the Early Olenekian of Stryczowice, Poland show reduced digits I and V and parallel three middle digits, traits of the dinosaur-lineage. The gait, though, was quadrapedal. These are the oldest known fossils of the dinosaur lineage.
Credit: Grzegorz Niedźwiedzki

The oldest evidence of the dinosaur lineage -- fossilized tracks -- is described in Proceedings of the Royal Society B. Just one or two million years after the massive Permian-Triassic extinction, an animal smaller than a house cat walked across fine mud in what is now Poland.

Related Articles


This fossilized trackway places the very closest relatives of dinosaurs on Earth about 250 million years ago -- 5 to 9 million years earlier than previously described fossilized skeletal material has indicated. The paper also described the 246-million-year-old Sphingopus footprints, the oldest evidence of a bipedal and large-bodied dinosaur.

"We see the closest dinosaur cousins immediately after the worst mass extinction," says Stephen Brusatte, a graduate student affiliated with the Division of Paleontology at the American Museum of Natural History. "The biggest crisis in the history of life also created one of the greatest opportunities in the history of life by emptying the landscape and making it possible for dinosaurs to evolve."

The new paper analyzes three sets of footprints from three different sites in the Holy Cross Mountains of central Poland. The sites, all quarries within a 25-mile radius of each other, are windows into three ecosystems because they represent different times periods. The Stryczowice trackway is the oldest at 250 million years. The Baranów trackway is the most recent at 246 million years of age while the Wióry trackway is sandwiched in time between the others.

Because footprints are only an imprint of a small part of the skeleton, identification of trackmakers is often tricky. Luckily, dinosaurs have a very distinctive gait, especially when compared to their diapsid relatives (the evolutionary group that includes birds, reptiles, and extinct lineages) like crocodiles and lizards. While lizards and crocodiles have a splayed walking style, dinosaurs place their two feet closer together. The footprints at all three Polish sites show this feature as well as indisputable dinosaur-like features, including three prominent central toes and reduced outer two toes, a parallel alignment of these three digits (a bunched foot), and a straight back edge of footprints, additional evidence of a dinosaur-like simple hinged ankle.

Because all of these features are seen in footprints at the oldest site, Brusatte and colleagues conclude that the Stryczowice prints -- which are only a few centimeters in length -- are the oldest evidence of the dinosaur lineage. These dinosaurs, though, are considered "stem dinosaurs," or the immediate relatives of dinosaurs not part of the slightly more derived clade that technically defines dinosaurs. Also, this animal did walk on all four limbs, an abnormal posture for early dinosaurs and their close relatives, although it appears that its forelimbs were already being reduced to more dinosaur-like proportions since the footprints overstep handprints.

The Baranów and Wióry trackways show changes early in the evolutionary history of dinosaurs. Wióry at 248-249 million years ago shows slight diversification in the types of tracks, but all tracks remain quadrupedal. Footprints from Baranów at 246 million years ago, however, may be the earliest evidence of moderately large-bodied and bipedal true dinosaurs. These tracks, which are called Sphingopus, are 15 centimeters long.

"Poland is a new frontier for understanding the earliest evolution of dinosaurs," says Grzegorz Niedźwiedzki of the University of Warsaw and the Polish Academy of Sciences, who led the project and has been excavating footprints from the three sites for nearly a decade. "It used to be that most of the important fossils were from Argentina or the southwestern U.S., but in Poland we have several sites that yield footprints and bones from the oldest dinosaurs and their closest cousins, stretching throughout the entire Triassic Period."

Finally, although the dinosaur group emerged soon after the Permian extinction, dinosaur-like tracks are rare in the footprint assemblages, representing only 2-3 percent of the prints discovered as opposed to 40-50 percent for crocodile-like archosaurs. Dinosaurs became more abundant tens of millions of years later.

"For the first 20-50 million years of dinosaur history, dinosaurs and their closest relatives were living in the shadow of their much more diverse, successful, and abundant crocodile-like cousins," says Brusatte. "The oldest dinosaurs were small and rare."

In addition to Brusatte and Niedźwiedzki, Richard Butler of the Bayerische Staatssammlung für Paläontologie und Geologie in Germany was an author of the paper. Brusatte is also affiliated with Columbia University. The research was funded in part by the National Science Foundation, the Percy Sladen Fund, the Alexander von Humboldt Research Fellowship, and the University of Warsaw.


Story Source:

The above story is based on materials provided by American Museum of Natural History. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephen L. Brusatte, Grzegorz Niedźwiedzki, Richard J. Butler. Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic. Proceedings of the Royal Society B, 2010; DOI: 10.1098/rspb.2010.1746

Cite This Page:

American Museum of Natural History. "Oldest evidence of dinosaurs in footprints: Dinosaur lineage emerged soon after massive Permian extinction." ScienceDaily. ScienceDaily, 6 October 2010. <www.sciencedaily.com/releases/2010/10/101006085311.htm>.
American Museum of Natural History. (2010, October 6). Oldest evidence of dinosaurs in footprints: Dinosaur lineage emerged soon after massive Permian extinction. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2010/10/101006085311.htm
American Museum of Natural History. "Oldest evidence of dinosaurs in footprints: Dinosaur lineage emerged soon after massive Permian extinction." ScienceDaily. www.sciencedaily.com/releases/2010/10/101006085311.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Fossils & Ruins News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Newsy (Jan. 30, 2015) — A long-necked dinosaur from the Jurassic Period was discovered in China. Researchers think it could answer mythology questions. Video provided by Newsy
Powered by NewsLook.com
Battle of Waterloo Artefacts Go on Display at Windsor Castle

Battle of Waterloo Artefacts Go on Display at Windsor Castle

AFP (Jan. 29, 2015) — Artefacts from the Battle of Waterloo go on display at Windsor Castle to mark the 200th anniversary of the momentous battle. The exhibition includes contemporary prints, drawings and personal belongings of French Emperor Napoleon. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Mideast Skull Find Sheds Light on Human Ancestors' Trek

Mideast Skull Find Sheds Light on Human Ancestors' Trek

AFP (Jan. 29, 2015) — A 55,000-year-old partial skull found in the Middle East gives clues to when our ancestors left their African homeland, and strengthens theories that they co-habited with Neanderthals. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Newsy (Jan. 28, 2015) — Wrongly categorized as lizard fossils, snake fossils now show the reptile could have developed earlier than we thought — 70 million years earlier. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins