Featured Research

from universities, journals, and other organizations

Oxidation mechanisms at gold nanoclusters unraveled

Date:
January 19, 2011
Source:
Suomen Akatemia (Academy of Finland)
Summary:
Researchers believe that the puzzle of catalytic gold is now partially solved. Gold can catalyze an oxidation reaction by first oxidizing itself. New research evidence on gold-oxide phase at room temperature and atmospheric pressure help us to finally understand the oxidation mechanisms of catalytic gold nanoclusters in these conditions.

A predicted atomic configuration of the gold-oxide chains (gold: grey, oxygen: pink) at the boundary of a monolayer-thick gold cluster (gold: yellow), supported by a thin magnesium oxide (magnesium: green, oxygen: red) on silver. The numbers indicate atomic charges in units of electron charge.
Credit: Image courtesy of Academy of Finland

Researchers believe that the puzzle of catalytic gold is now partially solved. Gold can catalyse an oxidation reaction by first oxidising itself. New research evidence on gold-oxide phase at room temperature and atmospheric pressure help us to finally understand the oxidation mechanisms of catalytic gold nanoclusters in these conditions.

Related Articles


"This is vital if we want to design oxidation catalysts that could use ambient oxygen in the reaction process. Catalysts that function at low temperatures are significant in terms of energy efficiency in the future," says Academy Research Fellow Karoliina Honkala at the Nanoscience Centre (NSC) of the University of Jyväskylä.

The researchers at the NSC show new evidence from computational studies that supported nanometer-sized gold clusters can completely break the O-O bond by formation of a novel one-dimensional gold-oxide phase at the boundary of the cluster. This mechanism is predicted to dominate at ambient conditions of one atmospheric pressure and room temperature.

The study was published in September in Angewandte Chemie, the leading international journal in chemistry. The study is part of Karoliina Honkala's Academy of Finland Academy Researcher project and it was conducted in cooperation with Professor Hannu Häkkinen. The computational work was facilitated by extensive resources from the Finnish IT Center for Science, CSC.

In the study, researchers exposed the monolayer-thick gold clusters to a variable number of oxygen molecules. It was found that even one gold cluster can effectively adsorb multiple oxygen molecules at the boundaries of the cluster, simultaneously weakening (stretching) the O-O bond by transferring electrons to the oxygenmolecules. Taking into account the effects of temperature and ambient pressure, the calculations predicted that the oxygen molecules will completely dissociate and the oxygen and gold atoms will form one-dimensional alternating chains at the cluster boundary. The oxygen atoms in these chains are negatively and the gold atoms positively charged, creating a system that is reminiscent to a one-dimensional gold-oxide chain. These chains are expected to be the highly catalytically active part towards conversion of carbon monoxide to carbon dioxide at room temperature.

Researchers Pentti Frondelius, Hannu Häkkinen and Karoliina Honkala have studied monolayer-thick gold clusters with 10-20 atoms, supported by thin magnesium oxide films that were grown on silver metal. These systems can be prepared experimentally, and last year the Jyväskylä group published a joint study with Professor Hans-Joachim Freund from the Fritz-Haber Institute in Berlin to characterize atomic and electronic structures of gold clusters in such systems.

Intensive experimental work since the early 1980s has indicated that gold nanoparticles exhibit unexpected catalytic activity towards many industrially important chemical reactions that involve activation of atomic bonds inside oxygen or hydrocarbon molecules. Room-temperature formation of carbon dioxide (CO2)from carbon monoxide (CO) and oxygen molecule (O2) is one of the most extensively studied processes. A number of different factors have been suggested to contribute to the ability of gold particles to activate the O-O bond, which is considered to be the key reaction step.

"The study now published provides us with a new approach to the problem. The formation of gold oxide, that is, the oxidation of gold, is in contradiction with the known properties of macroscopic gold metal. On the nanometer scale, however, everything seems to be possible," Professor Häkkinen says.


Story Source:

The above story is based on materials provided by Suomen Akatemia (Academy of Finland). Note: Materials may be edited for content and length.


Journal References:

  1. Pentti Frondelius, Hannu Häkkinen and Karoliina Honkala. Formation of Gold(I) Edge Oxide at Flat Gold Nanoclusters on an Ultrathin MgO Film under Ambient Conditions. Angewandte Chemie International Edition, 2010; DOI: 10.1002/anie.201003851
  2. X. Lin, N. Nilius, H.-J. Freund, M. Walter, P. Frondelius, K. Honkala, H. Häkkinen. Quantum Well States in Two-Dimensional Gold Clusters on MgO Thin Films. Physical Review Letters, 2009; 102 (20) DOI: 10.1103/PhysRevLett.102.206801

Cite This Page:

Suomen Akatemia (Academy of Finland). "Oxidation mechanisms at gold nanoclusters unraveled." ScienceDaily. ScienceDaily, 19 January 2011. <www.sciencedaily.com/releases/2010/10/101008082734.htm>.
Suomen Akatemia (Academy of Finland). (2011, January 19). Oxidation mechanisms at gold nanoclusters unraveled. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2010/10/101008082734.htm
Suomen Akatemia (Academy of Finland). "Oxidation mechanisms at gold nanoclusters unraveled." ScienceDaily. www.sciencedaily.com/releases/2010/10/101008082734.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) — Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) — A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) — Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins