Featured Research

from universities, journals, and other organizations

Plastics and nanoparticles -- the perfect combination

Date:
October 19, 2010
Source:
Fraunhofer-Gesellschaft
Summary:
These days, plastic components are vital to many fields of industry – lightweight construction, automobile manufacturing and electrical engineering, to name but a few. Now researchers have found ingenious ways to combine plastics with nanoparticles and endow them with new properties. Thanks to these innovative materials, aircraft could in future be better protected against lightning strikes.

When combined with plastics, these surface-modified carbon nanotubes can, for example, improve an aircraft’s protection against lightning strikes.
Credit: © Fraunhofer IFAM

These days, plastic components are vital to many fields of industry -- lightweight construction, automobile manufacturing and electrical engineering, to name but a few. Now researchers have found ingenious ways to combine plastics with nanoparticles and endow them with new properties. Thanks to these innovative materials, aircraft could in future be better protected against lightning strikes.

Picture the scene: Pitch-black clouds gathering on the horizon, an aircraft winging its way towards the storm … and suddenly a flash of white-hot lightning splits the sky. It is by no means a rare occurrence for aircraft to have to pass through bad weather fronts, but when they do, there is always one major danger -- lightning. Naturally, aircraft manufacturers do everything they can to protect their machines against strikes, but even aircraft made of aluminum do not always escape entirely unscathed. And when polymer components -- usually carbon fiber reinforced plastics (CFRPs) -- are incorporated into the design as a weight-saving measure, the situation becomes even more problematic, because they do not conduct electrical current as well as aluminum.

At the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Bremen, researchers have now developed a process for manufacturing new materials that should afford aircraft better protection against lightning strikes. They have been focusing on the unique material properties of carbon nanotubes (CNTs). CNTs are among the stiffest and strongest fibers known, and have particularly high electrical conductivity. In order to transfer their properties to CFRPs, the scientists have been combining these nanoparticles with plastics. "By mixing nanoparticles with plastics, we've been able to significantly enhance the material properties of the latter," states Dr. Uwe Lommatzsch, project manager at the IFAM. To give just two examples, CNTs are being used to optimize the electrical conductivity of plastics, and their heat dissipation properties are likewise being improved by the addition of metal particles.

The trick is in the mixing process, says Lommatzsch: "The micro- or nanoparticles must be highly homogeneous, and sometimes very closely bound to the polymer." To do this, the scientists employ plasma technology. They use an atmospheric plasma to alter the surface of the particles in such a way that they can be more readily chemically bound with the polymer. A pulsed discharge in a reaction chamber creates a reactive gas. Lommatzsch's colleague, Dr. Jörg Ihde, explains: "We spray the particles -- i.e. the nanotubes -- into this atmospheric plasma." They immediately fall into the selected solvent, which can then be used to further process the polymer. The whole procedure takes just a few seconds -- a huge advantage over the old method, in which CNTs were generally prepared in an acid bath using a wet chemical process. That took several hours or days, required considerably more chemicals, and generated significantly more waste.

In addition to improved carbon fiber reinforced plastics for use in aircraft manufacturing, the IFAM researchers have several other potential applications in mind. Ihde outlines an example: "We can increase the heat dissipation properties of electrical components by giving metal particles of copper or aluminum an electrically insulating coating in the plasma and then mixing them into a polymer." This can be pressed onto an electronic component so heat is dissipated directly. "Overheating of elements is a major problem in the electronics industry," he adds. The researchers have also devised a way to reduce electromagnetic losses by using this plasma process to coat soft magnetic particles such as iron and then combining them with plastics. Built into electric motors, they cut eddy current losses, thus improving efficiency and lengthening service life. IFAM experts will be exhibiting surface-modified carbon nanotubes -- which demonstrate significantly enhanced miscibility with solvents -- at the K 2010 trade fair in Düsseldorf, from October 27 through November 3.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Plastics and nanoparticles -- the perfect combination." ScienceDaily. ScienceDaily, 19 October 2010. <www.sciencedaily.com/releases/2010/10/101014113916.htm>.
Fraunhofer-Gesellschaft. (2010, October 19). Plastics and nanoparticles -- the perfect combination. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2010/10/101014113916.htm
Fraunhofer-Gesellschaft. "Plastics and nanoparticles -- the perfect combination." ScienceDaily. www.sciencedaily.com/releases/2010/10/101014113916.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins