Featured Research

from universities, journals, and other organizations

Shifting forms: How variations of same protein affect immune response

Date:
November 1, 2010
Source:
University of Pennsylvania School of Medicine
Summary:
How a T cell decides to make protein X, Y or Z can have profound effects for fighting foreign invaders or staving off dire autoimmune reactions. Researchers have identified the steps that control how different forms of an immune cell protein called CD45, which is critical for activating the immune system when faced with pathogens, are controlled in the arc of a body's immune response.

Signaling pathways can induce changes in splicing patterns so as to alter which protein is encoded by a given gene.
Credit: Kristen Lynch, PhD, University of Pennsylvania School of Medicine

How a T cell decides to make protein X, Y, or Z can have profound effects for fighting foreign invaders or staving off dire autoimmune reactions. Researchers at the University of Pennsylvania School of Medicine have identified the steps that control how different forms of an immune cell protein called CD45, which is critical for activating the immune system when faced with pathogens, are controlled in the arc of a body's immune response.

The shift between different forms of CD45 helps T cells function properly and also prevents hyperactivity, which could lead to the body's own immune system attacking itself. Knowing precisely how this shifting system works has implications for understanding autoimmune and neurological diseases.

"We have identified a new paradigm for the regulation of a process called alternative splicing, which allows for a single gene to code for multiple variations of one type of protein," says Kristen W. Lynch, PhD, associate professor of Biochemistry and Biophysics. This study appeared in an October issue of Molecular Cell.

CD45, a receptor protein that sits on the surface of T cells, is essential for immunity, for example, severe combined immune deficiency (SCID), also known as "bubble boy" syndrome, is caused by the absence of CD45.

Normal CD45 comes in five forms, all different lengths. In resting T cells, longer forms of CD45 messenger RNA (mRNA) and protein predominate, but in activated cells, the shorter form of CD45 mRNA is most abundant. "There is a spectrum of forms that shift toward full length in resting cells and towards the shorter form in activated cells," says Lynch. Messenger RNA contains the chemical blueprint for how to make a protein.

"We knew that a protein called PSF was required for splicing out parts of CD45 RNA to make the different forms," says Lynch. Lynch and post-doctoral fellow Florian Heyd, PhD have shown that there are additional critical components to the system that control the relative levels of the five forms of CD45 mRNA.

The first component that they identified is that another molecule called glycogen synthase kinase 3 (GSK3) found in resting T cells adds a phosphate molecule to polypyrimidine-tract binding protein-associated splicing factor (PSF). The phosphorylated PSF is then sequestered in a large protein complex by the third molecule called TRAP150. When PSF stays in this complex, the longer forms of CD45 predominate, and the T cell is ready to respond to foreign invaders. After a response, PSF loses its phosphates, and is released from TRAP150. As a consequence, PSF is then free to form the shortened forms of CD45 mRNA, which helps return the immune response to a resting state.

Splicing of CD45 mRNA involves recognition by PSF of a short length of RNA sequence called the exonic splicing silencer (ESS). Some variations within the ESS sequence are associated with autoimmune disease, especially multiple sclerosis. "We suspect that there are other spliced genes in T cells that follow the same path as CD45, and we are directing current efforts to identify them," said Lynch.

GSK3, a critical element in T cell activation, is important in other cell types and in other signaling pathways: It has been linked to the development of tauopathies, a group of neuronal diseases that includes Alzheimer's disease and Parkinson's disease. GSK3 is the focus of a search for drugs that might affect these and other diseases. For example, lithium is currently used to treat bipolar disorder by inactivating GSK3 in brain cells.

"Known and potential GSK3 inhibitors may also affect the health of the immune system," notes Lynch. "This emphasizes the importance of better understanding the variety of functions of GSK3 in the body."

This study was funded by a grant from the National Institute of General Medical Science and a fellowship from the Deutsche Forschungsgemeinschaft.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Florian Heyd, Kristen W. Lynch. Phosphorylation-Dependent Regulation of PSF by GSK3 Controls CD45 Alternative Splicing. Molecular Cell, 2010; 40 (1): 126 DOI: 10.1016/j.molcel.2010.09.013

Cite This Page:

University of Pennsylvania School of Medicine. "Shifting forms: How variations of same protein affect immune response." ScienceDaily. ScienceDaily, 1 November 2010. <www.sciencedaily.com/releases/2010/10/101015150931.htm>.
University of Pennsylvania School of Medicine. (2010, November 1). Shifting forms: How variations of same protein affect immune response. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/10/101015150931.htm
University of Pennsylvania School of Medicine. "Shifting forms: How variations of same protein affect immune response." ScienceDaily. www.sciencedaily.com/releases/2010/10/101015150931.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com
Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins