Featured Research

from universities, journals, and other organizations

Electron billiards in nanoscale circuits

Date:
October 24, 2010
Source:
Technische Universitaet Muenchen
Summary:
In solar cells, solar radiation boosts electrons to higher energy states, thereby releasing them from their atomic bonds as electricity begins to flow. Scientists have now developed a novel method to analyze the way photogenerated electrons move in the smallest photodetectors.

Cirquit with quantum point contacts.
Credit: Image courtesy of Technische Universitaet Muenchen

In solar cells, solar radiation boosts electrons to higher energy states, thereby releasing them from their atomic bonds as electricity begins to flow. Scientists led by Professor Alexander Holleitner, physicist at the Technische Universitδt Muenchen (TUM), have developed a novel method to analyze the way photogenerated electrons move in the smallest photodetectors.

At the heart of the method is a so-called quantum point contact (QPC). This is a narrow conductive channel in a semiconductor circuit. The scientists created a 70-nanometer narrow channel, about as wide as the wavelength of electrons in the semiconductor. The key is that only one electron at a time will fit through the channel, making possible extremely high-precision measurements of the electric current. As described in the current publication, this method was applied to photogenerated electrons for the first time ever.

In the experimental set-up it is not the sun, but rather a laser beam that kicks the electrons into their excited state. These electrons are then analyzed using a quantum point contact. In the process, the scientists were able to demonstrate for the first time that photogenerated electrons can flow several micrometers before colliding with crystalline atoms. They also established that the geometric form of a circuit has a strong influence on electron paths. Electrons can even "run around corners" when they rebound from circuit boundaries, not unlike billiard balls.

The insights and analytic opportunities made possible by this novel technique are relevant to a whole range of applications. These include, most notably, the further development of electronic components such as photodetectors, high electron mobility transistors (HEMT), and components that utilize the magnetic spin of electrons to process information.

Apart from Professor Holleitner's team, scientists working with Professor Joerg Kotthaus (Ludwig-Maximilians-Universitaet Muenchen) and Professor Peter Haenggi (Universitaet Augsburg) participated in the research. The studies were funded by the Cluster of Excellence Nanosystems Initiative Munich (NIM), the German Federal Ministry of Education and Research BMBF via nanoQUIT, the Deutsche Forschungsgemeinschaft (DFG Grant no. Ho 3324/4), the Center for NanoScience (CeNS), and LMUexcellent.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Klaus-Dieter Hof, Franz J. Kaiser, Markus Stallhofer, Dieter Schuh, Werner Wegscheider, Peter Hänggi, Sigmund Kohler, Jφrg P. Kotthaus, Alexander W. Holleitner. Spatially Resolved Ballistic Optoelectronic Transport Measured by Quantized Photocurrent Spectroscopy. Nano Letters, 2010; 10 (10): 3836 DOI: 10.1021/nl102068v

Cite This Page:

Technische Universitaet Muenchen. "Electron billiards in nanoscale circuits." ScienceDaily. ScienceDaily, 24 October 2010. <www.sciencedaily.com/releases/2010/10/101021190615.htm>.
Technische Universitaet Muenchen. (2010, October 24). Electron billiards in nanoscale circuits. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/10/101021190615.htm
Technische Universitaet Muenchen. "Electron billiards in nanoscale circuits." ScienceDaily. www.sciencedaily.com/releases/2010/10/101021190615.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins