Featured Research

from universities, journals, and other organizations

Pivoting hooks of graphene’s chemical cousin could revolutionize work of electron microscopes

Date:
November 2, 2010
Source:
University of Warwick
Summary:
The single layer material graphene was the subject of a Nobel prize this year, and now scientists have found molecular hooks on the surface of its close chemical cousin, graphene oxide, that could provide massive benefits to researchers using transmission electron microscopes. These hooks could even be used in building molecular scale mechanisms.

Material binding to graphene oxide "hook".
Credit: Image courtesy of University of Warwick

The single layer material graphene was the subject of a Nobel prize this year, and now research led by a team of scientists at the University of Warwick has found molecular hooks on the surface of its close chemical cousin, graphene oxide, that could provide massive benefits to researchers using transmission electron microscopes. These hooks could even be used in building molecular scale mechanisms.

The research team, which includes Drs. Jeremy Sloan, Neil Wilson and PhD student Priyanka Pandey from the Department of Physics and Dr. Jon Rourke from the Department of Chemistry together with the groups of Drs. Kazu Suenaga and Zheng Liu from AIST in Japan and Drs. Ian Shannon and Laura Perkins in Birmingham were looking at the possibility of using graphene as a base to mount single molecules for imaging by transmission electron microscopy. As graphene forms a sheet just one atom thick that is transparent to electrons it would enable high precision, high contrast imaging of the molecules being studied as well as the study of any interactions they have with the supporting graphene.

While this idea is great in theory, graphene is actually very difficult to create and manipulate in practice. The researchers therefore turned to graphene's easier to handle cousin, graphene oxide. This choice turned out to be a spectacularly better material as they found extremely useful properties, in the form of ready-made molecular hooks that could make graphene oxide the support material of choice for future transmission electron microscopy of any molecule with oxygen on its surface.

Graphene oxide's name obscures the fact that it is actually a combination of carbon, oxygen and hydrogen. For the most part it still resembles the one atom thin sheet of pure graphene, but it also has "functional groups" consisting of hydrogen paired with oxygen. These functional groups can bind strongly to molecules with external oxygens making them ideal tethers for researchers wishing to study them by transmission electron microscopy.

This feature alone will probably be enough to persuade many researchers to turn to graphene oxide as a support for the analysis of a range of molecules by transmission electron microscopy, but the researchers found yet another intriguing property of these handy hooks -- the molecules attached to them move and pivot around them.

Dr Jeremy Sloan said: "Under the right conditions the functional groups not only provide molecular tethers that hold molecules in an exact spot they also allow the molecule to be spun in that position. This opens up a range of new opportunities for the analysis of such molecules but could also be a useful mechanism for anyone seeking to create molecular sized 'machinery.'"

The research is published in the journal Nano Letters.


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeremy Sloan, Zheng Liu, Kazu Suenaga, Neil R. Wilson, Priyanka A. Pandey, Laura M. Perkins, Jonathan P. Rourke, Ian J. Shannon. Imaging the Structure, Symmetry, and Surface-Inhibited Rotation of Polyoxometalate Ions on Graphene Oxide. Nano Letters, 2010; 101026114929015 DOI: 10.1021/nl1026452

Cite This Page:

University of Warwick. "Pivoting hooks of graphene’s chemical cousin could revolutionize work of electron microscopes." ScienceDaily. ScienceDaily, 2 November 2010. <www.sciencedaily.com/releases/2010/11/101101083146.htm>.
University of Warwick. (2010, November 2). Pivoting hooks of graphene’s chemical cousin could revolutionize work of electron microscopes. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/11/101101083146.htm
University of Warwick. "Pivoting hooks of graphene’s chemical cousin could revolutionize work of electron microscopes." ScienceDaily. www.sciencedaily.com/releases/2010/11/101101083146.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins