Featured Research

from universities, journals, and other organizations

Pivoting hooks of graphene’s chemical cousin could revolutionize work of electron microscopes

Date:
November 2, 2010
Source:
University of Warwick
Summary:
The single layer material graphene was the subject of a Nobel prize this year, and now scientists have found molecular hooks on the surface of its close chemical cousin, graphene oxide, that could provide massive benefits to researchers using transmission electron microscopes. These hooks could even be used in building molecular scale mechanisms.

Material binding to graphene oxide "hook".
Credit: Image courtesy of University of Warwick

The single layer material graphene was the subject of a Nobel prize this year, and now research led by a team of scientists at the University of Warwick has found molecular hooks on the surface of its close chemical cousin, graphene oxide, that could provide massive benefits to researchers using transmission electron microscopes. These hooks could even be used in building molecular scale mechanisms.

Related Articles


The research team, which includes Drs. Jeremy Sloan, Neil Wilson and PhD student Priyanka Pandey from the Department of Physics and Dr. Jon Rourke from the Department of Chemistry together with the groups of Drs. Kazu Suenaga and Zheng Liu from AIST in Japan and Drs. Ian Shannon and Laura Perkins in Birmingham were looking at the possibility of using graphene as a base to mount single molecules for imaging by transmission electron microscopy. As graphene forms a sheet just one atom thick that is transparent to electrons it would enable high precision, high contrast imaging of the molecules being studied as well as the study of any interactions they have with the supporting graphene.

While this idea is great in theory, graphene is actually very difficult to create and manipulate in practice. The researchers therefore turned to graphene's easier to handle cousin, graphene oxide. This choice turned out to be a spectacularly better material as they found extremely useful properties, in the form of ready-made molecular hooks that could make graphene oxide the support material of choice for future transmission electron microscopy of any molecule with oxygen on its surface.

Graphene oxide's name obscures the fact that it is actually a combination of carbon, oxygen and hydrogen. For the most part it still resembles the one atom thin sheet of pure graphene, but it also has "functional groups" consisting of hydrogen paired with oxygen. These functional groups can bind strongly to molecules with external oxygens making them ideal tethers for researchers wishing to study them by transmission electron microscopy.

This feature alone will probably be enough to persuade many researchers to turn to graphene oxide as a support for the analysis of a range of molecules by transmission electron microscopy, but the researchers found yet another intriguing property of these handy hooks -- the molecules attached to them move and pivot around them.

Dr Jeremy Sloan said: "Under the right conditions the functional groups not only provide molecular tethers that hold molecules in an exact spot they also allow the molecule to be spun in that position. This opens up a range of new opportunities for the analysis of such molecules but could also be a useful mechanism for anyone seeking to create molecular sized 'machinery.'"

The research is published in the journal Nano Letters.


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeremy Sloan, Zheng Liu, Kazu Suenaga, Neil R. Wilson, Priyanka A. Pandey, Laura M. Perkins, Jonathan P. Rourke, Ian J. Shannon. Imaging the Structure, Symmetry, and Surface-Inhibited Rotation of Polyoxometalate Ions on Graphene Oxide. Nano Letters, 2010; 101026114929015 DOI: 10.1021/nl1026452

Cite This Page:

University of Warwick. "Pivoting hooks of graphene’s chemical cousin could revolutionize work of electron microscopes." ScienceDaily. ScienceDaily, 2 November 2010. <www.sciencedaily.com/releases/2010/11/101101083146.htm>.
University of Warwick. (2010, November 2). Pivoting hooks of graphene’s chemical cousin could revolutionize work of electron microscopes. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/11/101101083146.htm
University of Warwick. "Pivoting hooks of graphene’s chemical cousin could revolutionize work of electron microscopes." ScienceDaily. www.sciencedaily.com/releases/2010/11/101101083146.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
US Army Completes Ebola Treatment Unit

US Army Completes Ebola Treatment Unit

Reuters - US Online Video (Nov. 22, 2014) The US Army of engineers completes Ebola treatment center in Liberia. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins