Featured Research

from universities, journals, and other organizations

Engineer provides new insight into pterodactyl flight

Date:
November 29, 2010
Source:
University of Bristol
Summary:
Giant pterosaurs -- ancient reptiles that flew over the heads of dinosaurs -- were at their best in gentle tropical breezes, soaring over hillsides and coastlines or floating over land and sea on thermally driven air currents, according to new research.

The great pterosaur, Coloborhynchus piscator.
Credit: Copyright Ontograph Studios Ltd

Giant pterosaurs -- ancient reptiles that flew over the heads of dinosaurs -- were at their best in gentle tropical breezes, soaring over hillsides and coastlines or floating over land and sea on thermally driven air currents, according to new research from the University of Bristol.

Pterosaurs (also referred to as pterodactyls) were too slow and flexible to use the stormy winds and waves of the southern ocean like the albatrosses of today, the research by Colin Palmer, an engineer turned paleontology PhD student in Bristol's School of Earth Sciences, found.

Their slow flight and the variable geometry of their wings also enabled pterosaurs to land very gently, reducing the chance of breaking their paper- thin bones. This helps to explain how they were able to become the largest flying animals ever known.

Using his 40 years of experience in the engineering industry, Colin Palmer constructed models of pterosaur wing sections from thin, curved sheets of epoxy resin/carbon fibre composite and tested them in a wind tunnel. These tests quantified the two-dimensional characteristics of pterosaur wings for the first time, showing that such creatures were significantly less aerodynamically efficient and were capable of flying at lower speeds than previously thought.

Colin Palmer said: "Pterosaur wings were adapted to a low-speed flight regime that minimizes sink rate. This regime is unsuited to marine style dynamic soaring adopted by many seabirds which requires high flight speed coupled with high aerodynamic efficiency, but is well suited to thermal/slope soaring. The low sink rate would have allowed pterosaurs to use the relatively weak thermal lift found over the sea.

"Since the bones of pterosaurs were thin-walled and thus highly susceptible to impact damage, the low-speed landing capability would have made an important contribution to avoiding injury and so helped to enable pterosaurs to attain much larger sizes than extant birds. The trade-off would have been an extreme vulnerability to strong winds and turbulence, both in flight and on the ground, like that experienced by modern-day paragliders."

The research is published November 24 in Proceedings of the Royal Society B.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Colin Palmer. Flight in slow motion: aerodynamics of the pterosaur wing. Proceedings of the Royal Society B, November 24, 2010 DOI: 10.1098/rspb.2010.2179

Cite This Page:

University of Bristol. "Engineer provides new insight into pterodactyl flight." ScienceDaily. ScienceDaily, 29 November 2010. <www.sciencedaily.com/releases/2010/11/101124073902.htm>.
University of Bristol. (2010, November 29). Engineer provides new insight into pterodactyl flight. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2010/11/101124073902.htm
University of Bristol. "Engineer provides new insight into pterodactyl flight." ScienceDaily. www.sciencedaily.com/releases/2010/11/101124073902.htm (accessed April 19, 2014).

Share This



More Plants & Animals News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins