Featured Research

from universities, journals, and other organizations

Could thermodynamics solve the problem of sustainability?

Date:
November 26, 2010
Source:
Inderscience
Summary:
Socio-economics, natural capital and other esoteric notions prove themselves to be inadequate again and again when researchers and economists attempt to quantify the degree of sustainability. But, what if consumption of resources by a society or other complex system were simply viewed as a flow of exergy, the useful "work" a system can do? When approached in this way, the concept of sustainability becomes a question of thermodynamics where thresholds can be calculated above or below which a system is either consuming "too much" or "too little" respectively, and so is not in a self-preserving state of equilibrium.

Socio-economics, natural capital and other esoteric notions prove themselves to be inadequate again and again when researchers and economists attempt to quantify the degree of sustainability. But, what if consumption of resources by a society or other complex system were simply viewed as a flow of exergy, the useful "work" a system can do? When approached in this way, the concept of sustainability becomes a question of thermodynamics where thresholds can be calculated above or below which a system is either consuming "too much" or "too little" respectively, and so is not in a self-preserving state of equilibrium.

Related Articles


Enrico Sciubba of the Department of Mechanical and Aerospace Engineering, at the University of Roma La Sapienza, and physicist Federico Zullo of the University of Roma Tre, in Italy, have developed a simplified thermodynamic model of sustainability. They describe details of their model in the International Journal of Exergy. The model is an approximation of how complex systems, whether economic or ecological behave under different conditions and provides the foundations for building a more sophisticated representation that can be used to determine whether a system can exist in a sustainable state.

The starting point of the approach is to look at just a single population in a system using a reservoir of non-renewable resources, energy and materials and so on. The term exergy rate, i.e. the total amount of exergy "used up" by the population per unit time, is then used to build a set of thermodynamics equations that model the birth and death rates of the population and the use of resources.

The model ignores social, ethical, political and medical considerations the authors of the research paper explain. Nevertheless, for those aspects of any system to be sustainable the flow of resources, the inputs and outputs, must first be sustainable, otherwise the system will never achieve equilibrium. Number-crunching the thermodynamic model leads to some perhaps obvious conclusions.

"The role played by the resource consumption rate in our model is clear: a change in an ecosystem means a change in the amount of exergetic resources available to the population," the team explains. "This is reflected in a variation of the 'source' terms in the model. The sustainability limit is negated for a system, or society, thriving solely on non-renewables, and the limit for a renewables-based society is shown to depend both on the amount of renewable resources the population is able to exploit and on its consumption rate."

However, while the conclusions might seem obvious, providing a mathematical basis for such conclusions opens up the possibility of determining which aspects of a system affect its sustainability the most and so could allow policy makers to focus only on the important factors rather than trivial points.


Story Source:

The above story is based on materials provided by Inderscience. Note: Materials may be edited for content and length.


Journal Reference:

  1. Enrico Sciubba, Federico Zullo. Is sustainability a thermodynamic concept? International Journal of Exergy, 2011; 8: 68-85

Cite This Page:

Inderscience. "Could thermodynamics solve the problem of sustainability?." ScienceDaily. ScienceDaily, 26 November 2010. <www.sciencedaily.com/releases/2010/11/101126094454.htm>.
Inderscience. (2010, November 26). Could thermodynamics solve the problem of sustainability?. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/11/101126094454.htm
Inderscience. "Could thermodynamics solve the problem of sustainability?." ScienceDaily. www.sciencedaily.com/releases/2010/11/101126094454.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins