Featured Research

from universities, journals, and other organizations

Dark matter could transfer energy in the Sun

Date:
December 3, 2010
Source:
Plataforma SINC
Summary:
Researchers have studied the effects of the presence of dark matter in the Sun. According to their calculations, low mass dark matter particles could be transferring energy from the core to the external parts of the Sun, which would affect the quantity of neutrinos that reach Earth.

Scientists believe that the majority of the dark matter particles gather together in the centre of the Sun, but in their elliptic orbits they also travel to the outer part, interacting and exchanging with the solar atoms. In this way, the WIMPs transport the energy from the burning central core to the cooler peripheral parts.
Credit: Hinode JAXA/NASA/PPARC

Researchers from the Institute for Corpuscular Physics (IFIC) and other European groups have studied the effects of the presence of dark matter in the Sun. According to their calculations, low mass dark matter particles could be transferring energy from the core to the external parts of the Sun, which would affect the quantity of neutrinos that reach Earth.

"We assume that the dark matter particles interact weakly with the Sun's atoms, and what we have done is calculate at what level these interactions can occur, in order to better describe the structure and evolution of the Sun," Marco Taoso, researcher at the IFIC, a combined centre of the Spanish National Research Council and the University of Valencia, explains.

The astrophysical observations suggest that our galaxy is situated in a halo of dark matter particles. According to the models, some of these particles, the WIMPs (Weakly Interacting Massive Particles) interact weakly with other normal ones, such as atoms, and could be building up on the inside of stars. The study, recently published in the journal Physical Review D, carries out an in-depth study of the case of the Sun in particular.

"When the WIMPs pass through the Sun they can break up the atoms of our star and lose energy. This prevents them from escaping the gravitational force of the Sun which captures them, and they become trapped, orbiting inside it, with no way of escaping," the researcher points out.

The dark matter cools down the Sun's core

Scientists believe that the majority of the dark matter particles gather together in the centre of the Sun, but in their elliptic orbits they also travel to the outer part, interacting and exchanging with the solar atoms. In this way, the WIMPs transport the energy from the burning central core to the cooler peripheral parts.

"This effect produces a cooling down of the core, the region from where the neutrinos originate due to the nuclear reactions of the Sun," Taoso points out. "And this corresponds to a reduction in the flux of solar neutrinos, since these depend greatly on the temperature of the core."

The neutrinos that reach Earth can be measured by means of different techniques. These data can be used to detect the modifications of the solar temperature caused by the WIMPs. The transport of energy by these particles depends on the likelihood of them interacting with the atoms, and the "size" of these interactions is related to the reduction in the neutrino flux.

"As a result, current data about solar neutrinos can be used to put limits on the extent of the interactions between dark matter and atoms, and using numerical codes we have proved that certain values correspond to a reduction in the flux of solar neutrinos and clash with the measurements," the scientist reveals.

The team has applied their calculations to better understand the effects of low mass dark matter particles (between 4 and 10 gigaelectronvolts). At this level we find models that attempt to explain the results of experiments such as DAMA (beneath an Italian mountain) or CoGent (in a mine in the USA), which look for dark material using "scintillators" or WIMP detectors.

Debate about WIMP and solar composition

This year another study by scientists from Oxford University (United Kingdom) also appeared. It states that WIMPs not only reduce the fluxes of solar neutrinos, but also, furthermore, modify the structure of the Sun and can explain its composition.

"Our calculations, however, show that the modifications of the star's structure are too small to support this claim and that the WIMPs cannot explain the problem of the composition of the sun," Taoso concludes.


Story Source:

The above story is based on materials provided by Plataforma SINC. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marco Taoso, Fabio Iocco, Georges Meynet, Gianfranco Bertone, Patrick Eggenberger. Effect of low mass dark matter particles on the Sun. Physical Review D, 2010; 82 (8): 083509 DOI: 10.1103/PhysRevD.82.083509

Cite This Page:

Plataforma SINC. "Dark matter could transfer energy in the Sun." ScienceDaily. ScienceDaily, 3 December 2010. <www.sciencedaily.com/releases/2010/12/101201095822.htm>.
Plataforma SINC. (2010, December 3). Dark matter could transfer energy in the Sun. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2010/12/101201095822.htm
Plataforma SINC. "Dark matter could transfer energy in the Sun." ScienceDaily. www.sciencedaily.com/releases/2010/12/101201095822.htm (accessed April 21, 2014).

Share This



More Space & Time News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Easter Morning Delivery for Space Station

Raw: Easter Morning Delivery for Space Station

AP (Apr. 20, 2014) Space station astronauts got a special Easter treat: a cargo ship full of supplies. The SpaceX company's cargo ship, Dragon, spent two days chasing the International Space Station following its launch from Cape Canaveral. (April 20) Video provided by AP
Powered by NewsLook.com
A Hoax? Cosmetics Company Wants To Brighten The Moon

A Hoax? Cosmetics Company Wants To Brighten The Moon

Newsy (Apr. 19, 2014) FOREO, a Swedish cosmetics company, says it wants to brighten the moon to lower electricity costs. Video provided by Newsy
Powered by NewsLook.com
Raw: Space X Launches to Space Station

Raw: Space X Launches to Space Station

AP (Apr. 18, 2014) On it's second attempt this week, The Space X company launched Friday from Cape Canaveral to ferry supplies to the International Space Station. (April 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins