Featured Research

from universities, journals, and other organizations

Gene duplication detected in depression; Finding points to disruptions in brain signaling networks

Date:
December 2, 2010
Source:
Children's Hospital of Philadelphia
Summary:
A large genetic study of people with major depression has found that a duplicated region of DNA on chromosome 5 predisposes people to the disorder. The gene involved plays an important role in the development of nerve cells, adding to evidence that disruptions in neurotransmission networks form a biological basis for depression.

A large genetic study of people with major depression has found that a duplicated region of DNA on chromosome 5 predisposes people to the disorder. The gene involved plays an important role in the development of nerve cells, adding to evidence that disruptions in neurotransmission networks form a biological basis for depression.

"The copy number variations we discovered were exclusive to people with depression, and were located in a gene region important in signaling among brain cells," said study leader Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia. "This finding extends work by other researchers suggesting that disruptions in neurotransmitter networks in the brain are an underlying cause of major depressive disorders."

The study appears online in PLoS ONE, published by the Public Library of Science.

The current research is the first large-scale genome-wide study of copy number variation (CNV) in major depressive disorder (MDD), a major psychiatric and behavioral disorder affecting an estimated 16 percent of the U.S. population. CNVs are deletions or duplications of segments of DNA. While a specific CNV is relatively rare in a population, it often exerts a strong effect on an individual who harbors the CNV in their genes.

Hakonarson's group conducted a whole-genome scan of DNA from 1,693 patients with MDD, mainly from a European database, and from 4,506 control subjects.

The researchers identified 12 CNVs exclusive to MDD cases. Their most notable finding was a large duplication of DNA segments on chromosome 5q35.1, a CNV shared by five unrelated patients and not observed in healthy controls. Residing at that location is the gene SLIT3, which is involved in axon development. The axon is the portion of a neuron that carries nerve impulses away from the cell body.

Hakonarson added that he plans follow-up studies with more refined sequencing technology, in which he expects to identify many more CNVs and possibly other types of mutations in the SLIT3 gene, as well as in other functionally related genes that may predispose to depression. Further studies may also reveal how strongly CNVs at SLIT3 and other related genes contribute to the risk of depression.

"Clinical applications for our discoveries are still in the future, but it may be possible at some point to incorporate these findings into personalized medicine," Hakonarson said. "Identifying causative genes may suggest future targets for drug development, and may also help us predict a person's future risk of developing depression," he added.

Hakonarson's group used genotype data from the Genetic Association Information Network and from the database of Genotype and Phenotype (dbGaP) of the National Institutes of Health. Funding for the study came from an Institutional Development Award from The Children's Hospital of Philadelphia and from a Research Development Award from the Cotswold Foundation.

"Duplication of the SLIT3 Locus on 5q35.1 Predisposes to Major Depressive Disorder," PLoS One, published online Dec. 1, 2010.


Story Source:

The above story is based on materials provided by Children's Hospital of Philadelphia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joseph T Glessner, Kai Wang, Patrick M A Sleiman, Haitao Zhang, Cecilia E Kim, James H Flory, Jonathan P Bradfield, Marcin Imielinski, Edward C Frackelton, Haijun Qiu, Frank Mentch, Struan F A Grant, Hakon Hakonarson. Duplication of the SLIT3 Locus on 5q35.1 Predisposes to Major Depressive Disorder. PLoS ONE, 2010; 5 (12): e15463 DOI: 10.1371/journal.pone.0015463

Cite This Page:

Children's Hospital of Philadelphia. "Gene duplication detected in depression; Finding points to disruptions in brain signaling networks." ScienceDaily. ScienceDaily, 2 December 2010. <www.sciencedaily.com/releases/2010/12/101201172535.htm>.
Children's Hospital of Philadelphia. (2010, December 2). Gene duplication detected in depression; Finding points to disruptions in brain signaling networks. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/12/101201172535.htm
Children's Hospital of Philadelphia. "Gene duplication detected in depression; Finding points to disruptions in brain signaling networks." ScienceDaily. www.sciencedaily.com/releases/2010/12/101201172535.htm (accessed July 25, 2014).

Share This




More Mind & Brain News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com
Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins