Featured Research

from universities, journals, and other organizations

Heat helped hasten life's beginnings on Earth, research suggests

Date:
December 5, 2010
Source:
University of North Carolina School of Medicine
Summary:
New research investigating the effect of temperature on extremely slow chemical reactions suggests that the time required for evolution on a warm earth is shorter than critics might expect.

Lava flow.
Credit: USGS

There has been controversy about whether life originated in a hot or cold environment, and about whether enough time has elapsed for life to have evolved to its present complexity.

Related Articles


But new research at the University of North Carolina at Chapel Hill investigating the effect of temperature on extremely slow chemical reactions suggests that the time required for evolution on a warm earth is shorter than critics might expect.

The findings are published in the Dec. 1, 2010, online early edition of the Proceedings of the National Academy of Sciences.

Enzymes, proteins that jump-start chemical reactions, are essential to life within cells of the human body and throughout nature. These molecules have gradually evolved to become more sophisticated and specific, said lead investigator Richard Wolfenden, PhD, Alumni Distinguished Professor of biochemistry and biophysics at the UNC School of Medicine.

To appreciate how powerful modern enzymes are, and the process of how they evolved, scientists need to know how quickly reactions occur in their absence.

Wolfenden's group measured the speed of chemical reactions, estimating that some of them take more than 2 billion years without an enzyme.

In the process of measuring slow reaction rates, "it gradually dawned on us that the slowest reactions are also the most temperature-dependent," Wolfenden said.

In general, the amount of influence temperature has on reaction speeds varies drastically, the group found. In one slow reaction, for instance, raising the temperature from 25 to 100 degrees Celsius increases the rate 10 million fold. "That is a shocker," Wolfenden said. "That's what's going to surprise people most, as it did me."

That is surprising, Wolfenden said, because a textbook rule in chemistry -- for more than a century -- has been that the influence of temperature is modest. In particular, a doubling in reaction rate occurs when the temperature rises 10 degree Celsius, according to experiments done in 1866.

High temperatures were probably a crucial influence on reaction rates when life began forming in hot springs and submarine vents, Wolfenden said. Later, the cooling of the earth provided selective pressure for primitive enzymes to evolve and become more sophisticated, the Wolfenden's group hypothesizes.

Using two different reaction catalysts -- which are not protein enzymes but that may have resembled early precursors to enzymes -- the group put the hypothesis to the test. The catalyzed reactions are indeed far less sensitive to temperature, compared with reactions that are accelerated by catalysts. The results are consistent with our hypothesis, Wolfenden said.

Wolfenden's group plans to test the hypothesis using other catalysts. In the meantime, these findings are likely to influence how scientists think of the first primitive forms of life on earth, and may affect how researchers design and enhance the power of artificial catalysts, he added.

Study co-authors from UNC are Randy Stockbridge, PhD, Charles Lewis, Jr., PhD and research specialist Yang Yuan, MS. Support for the research came from the National Institute of General Medicine, a component of the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. B. Stockbridge, C. A. Lewis, Y. Yuan, R. Wolfenden. Impact of temperature on the time required for the establishment of primordial biochemistry, and for the evolution of enzymes. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1013647107

Cite This Page:

University of North Carolina School of Medicine. "Heat helped hasten life's beginnings on Earth, research suggests." ScienceDaily. ScienceDaily, 5 December 2010. <www.sciencedaily.com/releases/2010/12/101202124321.htm>.
University of North Carolina School of Medicine. (2010, December 5). Heat helped hasten life's beginnings on Earth, research suggests. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2010/12/101202124321.htm
University of North Carolina School of Medicine. "Heat helped hasten life's beginnings on Earth, research suggests." ScienceDaily. www.sciencedaily.com/releases/2010/12/101202124321.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Domestication Might've Been Bad For Horses

Domestication Might've Been Bad For Horses

Newsy (Dec. 16, 2014) A group of scientists looked at the genetics behind the domestication of the horse and showed how human manipulation changed horses' DNA. Video provided by Newsy
Powered by NewsLook.com
Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

AFP (Dec. 16, 2014) A collection of rare manuscripts by composers Mozart, Beethoven, Shubert and Bizet are due to go on sale at auction on December 17. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Old Ship Records to Shed Light on Arctic Ice Loss

Old Ship Records to Shed Light on Arctic Ice Loss

Reuters - Innovations Video Online (Dec. 15, 2014) Researchers are looking to the past to gain a clearer picture of what the future holds for ice in the Arctic. A project to analyse and digitize ship logs dating back to the 1850's aims to lengthen the timeline of recorded ice data. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins