Featured Research

from universities, journals, and other organizations

Why a cloned cat isn't exactly like the original: New statistical law for cell differentiation

Date:
December 15, 2010
Source:
Institute of Physical Chemistry of the Polish Academy of Sciences
Summary:
Why does a cloned cat look different from the original? Using computer simulations and theoretical calculations researchers discovered a new statistical law that explains it. It explains the simplest and therefore probably the most widespread mechanism, by which a growing population of genetically identical cells forms groups performing different functions.

Kittens. Why does a cloned cat looks different from the original? Researchers used computer simulations and theoretical calculations to find out, and in the process they discovered a new statistical law.
Credit: iStockphoto/Anna Utekhina

Why does a cloned cat looks different from the original? A new answer to that question has been found by researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. Using computer simulations and theoretical calculations they discovered a new statistical law.

It explains the simplest and therefore probably the most widespread mechanism, by which a growing population of genetically identical cells forms groups performing different functions. Under certain conditions, a population of reproducing cells can spontaneously divide into two groups with distinctly different functions. The researchers have since long been looking for the reasons of such a spectacular process but the mechanisms found so far were complicated and did not explain all observed cases.

Theoretical calculations and computer simulations carried out by scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw provided the simplest explanation. "We discovered a statistical law that is responsible for cell differentiation," says Dr Anna Ochab-Marcinek from the IPC PAS.

The new statistical mechanism will possibly illuminate one of the sources of bacteria's resistance to antibiotics and help explain why monozygotic twins and cloned organisms are not their identical copies. A paper describing the discovery has just appeared in the Proceedings of the National Academy of Sciences.

In the middle of the last century, laboratory studies had shown that an Escherichia coli population could divide into two groups with one of them showing expression of a specific gene, e.g., the gene responsible for production of an enzyme to digest a specific type of sugar, whereas in the other group the same gene remained inactive. The effect is known in science as population bimodality. The observation was intriguing, as all the cells had the same DNA and were kept under the same conditions. Moreover, despite the lack of changes in the gene set, subsequent cell generations were able to inherit new functions. The researchers from the IPC PAS set themselves the task of discovering the simplest possible mechanism that could be responsible for such unexpected behaviour in cells. They carried out theoretical calculations followed by a verification with a series of Monte Carlo simulations. The theoretical and computational work involved the most important chemical reactions that take place in a living cell.

The genetic information in cells is contained in the DNA structure, the proteins, however, are synthesised based on the sequences in the messenger RNA (mRNA). To produce a protein encoded in a gene, the information must be first transferred from DNA to mRNA. The transfer process (transcription) is controlled by molecules called transcription factors. After attachment to DNA, these molecules may repress (then they are called repressors) or promote (activators) the gene translation. "A cell is a bag with a plenty of various molecules, moving randomly due to thermal motions. So, it may happen that after cell division one daughter cell will include more transcription factors than the other," describes Dr Anna Ochab-Marcinek from the IPC PAS. Using computer simulations, the researchers analysed, how a different number of repressors or activators affects the cell population.

The computer simulations carried out at the Institute of Physical Chemistry of the PAS mapped fluctuating concentrations of proteins produced by each cell during the development of population. As the number of molecules of a specific type in a cell is relatively low, the cell divisions result in an unequal distribution of repressors or activators among the daughter cells. As a result, the cell population growth leads to appearance of cells that produce a significantly more protein than other cells or do not produce it at all.

The dependence between the production rate of a specific protein and the number of repressors or activators in a cell is not proportional. The effect is referred to as a nonlinearity as the plot showing how the number of protein molecules depends on the number of transcription factors (the so called transfer function) is not a straight line. The researchers from the IPC PAS have shown that the nonlinearity is responsible for formation of two distinct groups in the population: in one of them the gene is active, whereas in the other -- it is not.

The division of a cell population into two groups is of significant evolutionary importance. The differentiation increases the survival chance for a part of the population, if any changes unfavourably affecting one of the groups would occur in the environment. "It is known that bacteria mutate and become more resistant to drugs. We have shown the simplest mechanism by which the very nature of bacteria and the underlying laws of statistics increase the survival probability of at least a part of the population, even if no mutations have occurred," says Dr Ochab-Marcinek.

The researchers from the IPC PAS have also introduced a simple method of geometric construction that can be used to predict when a specific cell population can develop a cell differentiation. The method consists in plotting of a straight line that intersects the axes of the coordinate system at points corresponding to the measured burst frequency of the transcription factor production in a population and the magnitude of these bursts. If the straight line intersects the gene response curve -- known from the laboratory measurements -- then the cell population starts to develop bimodality. With such a simple geometrical operation one can easily explain the results of earlier experiments performed by other research groups, for instance the appearance of bimodality in population only at specific antibiotic concentrations.

"As the mechanism we discovered is the simplest among all possible ones, we suppose that, unavoidably, it is very common in cells," says Dr Marcin Tabaka, a co-discoverer of the phenomenon. "The statistical law we discovered describes how a random disorder inside individual cells transforms into an order leading to a differentiation of population that is of benefit for its survival," sums up Dr Ochab-Marcinek.

The project has been completed under a TEAM Programme of the Foundation for Polish Science, co-founded by the EU European Regional Development Fund (TEAM/2008-2/2).


Story Source:

The above story is based on materials provided by Institute of Physical Chemistry of the Polish Academy of Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Ochab-Marcinek, M. Tabaka. Bimodal gene expression in noncooperative regulatory systems. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1008965107

Cite This Page:

Institute of Physical Chemistry of the Polish Academy of Sciences. "Why a cloned cat isn't exactly like the original: New statistical law for cell differentiation." ScienceDaily. ScienceDaily, 15 December 2010. <www.sciencedaily.com/releases/2010/12/101215082939.htm>.
Institute of Physical Chemistry of the Polish Academy of Sciences. (2010, December 15). Why a cloned cat isn't exactly like the original: New statistical law for cell differentiation. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/12/101215082939.htm
Institute of Physical Chemistry of the Polish Academy of Sciences. "Why a cloned cat isn't exactly like the original: New statistical law for cell differentiation." ScienceDaily. www.sciencedaily.com/releases/2010/12/101215082939.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins