Featured Research

from universities, journals, and other organizations

Protein helps parasite, toxoplasma gondii, survive in host cells

Date:
December 29, 2010
Source:
Washington University School of Medicine
Summary:
Researchers have learned why changes in a single gene, ROP18, contribute substantially to dangerous forms of the parasite Toxoplasma gondii. The answer has likely moved science a step closer to new ways to beat Toxoplasma and many other parasites.

Toxoplasma gondii and other related parasites surround themselves with a membrane to protect against factors in host cells that would otherwise kill them. Scientists at Washington University School of Medicine in St. Louis have identified a parasite protein that protects this membrane from host proteins that can rupture it. According to the researchers, disabling the parasite's defensive protein could help give hosts an advantage in the battle against infection.
Credit: Wandy Beatty

Researchers at Washington University School of Medicine in St. Louis have learned why changes in a single gene, ROP18, contribute substantially to dangerous forms of the parasite Toxoplasma gondii. The answer has likely moved science a step closer to new ways to beat Toxoplasma and many other parasites.

In a study published in Cell Host & Microbe, scientists show that the ROP18 protein disables host cell proteins that would otherwise pop a protective bubble the parasite makes for itself. The parasite puts the bubble on like a spacesuit by forming a membrane around itself when it enters host cells. This protects it from the hostile environment inside the cell, which would otherwise kill it.

"If we can find therapies that block ROP18 and other parasite proteins like it, that could give the host the upper hand in the battle against infection," says first author Sarah Fentress, a graduate student in the laboratory of L. David Sibley, PhD, professor of molecular microbiology.

Infection with Toxoplasma, or toxoplasmosis, is most familiar to the general public from the recommendation that pregnant women avoid changing cat litter. Cats are commonly infected with the parasite, as are some livestock and wildlife.

"The exact role of ROP18 and related proteins in human disease remains to be studied," says Sibley. "But mice are natural hosts of Toxoplasma, so studies in laboratory mice are relevant to the spread of infection."

Epidemiologists estimate that as many as one in every four humans is infected with Toxoplasma. Infections typically cause serious disease only in patients with weakened immune systems. In some rare cases, though, infection in patients with healthy immune systems leads to serious eye or central nervous system disease, or congenital defects or death in the fetuses of pregnant women.

In the new study, Fentress showed that the ROP18 protein binds to a class of host proteins known as immunity-related GTPases. Tests in cell cultures and animal models showed that this binding leads to a reaction that disables the GTPases, which normally would rupture the parasite's protective membrane.

"With one exception, humans don't have the same family of immunity-related GTPases," Fentress notes. "But we do have a similar group of immune recognition proteins called guanylate-binding proteins, and we are currently testing to see if ROP18 deactivates these proteins in human cells in a similar manner."

The findings could be applicable to other parasites and pathogens. Toxoplasmosis belongs to a family of parasites that includes the parasite Plasmodium, which causes malaria. All surround themselves with protective membranes when they enter host cells.

"Plasmodium doesn't make ROP18, but it does secrete related proteins called FIKK," says Fentress. "It's possible they also act to thwart host defense mechanisms like GTPases and guanylate-binding proteins."

This research was supported by the National Institutes of Health and the Veteran's Administration.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. The original article was written by Michael C. Purdy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sarah J. Fentress, Michael S. Behnke, Ildiko R. Dunay, Mona Mashayekhi, Leah M. Rommereim, Barbara A. Fox, David J. Bzik, Gregory A. Taylor, Benjamin E. Turk, Cheryl F. Lichti. Phosphorylation of Immunity-Related GTPases by a Toxoplasma gondii-Secreted Kinase Promotes Macrophage Survival and Virulence. Cell Host & Microbe, 2010; 8 (6): 484 DOI: 10.1016/j.chom.2010.11.005

Cite This Page:

Washington University School of Medicine. "Protein helps parasite, toxoplasma gondii, survive in host cells." ScienceDaily. ScienceDaily, 29 December 2010. <www.sciencedaily.com/releases/2010/12/101228180906.htm>.
Washington University School of Medicine. (2010, December 29). Protein helps parasite, toxoplasma gondii, survive in host cells. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2010/12/101228180906.htm
Washington University School of Medicine. "Protein helps parasite, toxoplasma gondii, survive in host cells." ScienceDaily. www.sciencedaily.com/releases/2010/12/101228180906.htm (accessed September 18, 2014).

Share This



More Plants & Animals News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chimp Violence Study Renews Debate On Why They Kill

Chimp Violence Study Renews Debate On Why They Kill

Newsy (Sep. 17, 2014) The study weighs in on a debate over whether chimps are naturally violent or become that way due to human interference in the environment. Video provided by Newsy
Powered by NewsLook.com
Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins