Featured Research

from universities, journals, and other organizations

Model predicts a drug's likelihood of causing birth defects

Date:
January 5, 2011
Source:
Children's Hospital Boston
Summary:
When pregnant women need medications, there is often concern about possible effects on the fetus. Although some drugs are clearly recognized to cause birth defects, and others are generally recognized as safe, surprisingly little is known about most drugs' level of risk. Researchers have created a preclinical model for predicting a drug's teratogenicity (tendency to cause fetal malformations) based on characterizing the genes that it targets.

When pregnant women need medications, there is often concern about possible effects on the fetus. Although some drugs are clearly recognized to cause birth defects (thalidomide being a notorious example), and others are generally recognized as safe, surprisingly little is known about most drugs' level of risk. Researchers in the Children's Hospital Boston Informatics Program (CHIP) have created a preclinical model for predicting a drug's teratogenicity (tendency to cause fetal malformations) based on characterizing the genes that it targets.

The model, described in the March 2011 issue of Reproductive Toxicology (published online in November), used bioinformatics and public databases to profile 619 drugs already assigned to a pregnancy risk class, and whose target genes or proteins are known. For each of the genes targeted, 7426 in all, CHIP investigators Asher Schachter, MD, MMSc, MS, and Isaac Kohane, MD, PhD, crunched databases to identify genes involved in biological processes related to fetal development, looking for telltale search terms like "genesis," "develop," "differentiate" or "growth."

The researchers found that drugs targeting a large proportion of genes associated with fetal development tended to be in the higher risk classes. Based on the developmental gene profile, they created a model that showed 79 percent accuracy in predicting whether a drug would be in Class A (safest) or Class X (known teratogen).

For example, the cholesterol-lowering drugs cerivastatin, lovastatin, pravastatin and fluvastatin are all in Class X. All of these drugs also targeted very high proportions of high-risk genes (98 to 100 percent). The anti-coagulant warfarin, also in Class X, had a proportion of 88 percent.

When Schachter and Kohane applied the model to drugs across all risk classes, the proportion of developmental genes targeted roughly matched the degree of known risk (see graph). However, the model needs further validation before Schachter is willing to share actual predictions for specific drugs. "We don't want to risk misleading pregnant women from taking necessary medicines," he says.

One difficulty in validating the model is that the "known" teratogenicity it's being tested against often isn't known. Between Class A and Class X are Classes B, C and D, with increasing amounts of risk, but the boundaries between them are based on minimal data. Teratogenic effects may be difficult to spot, since most drugs are taken relatively rarely in pregnancy, some may be taken along with other drugs, and any effects tend to be rare or too subtle to be noted in medical records. Moreover, data from animal testing doesn't necessarily apply to humans.

"A lot of drugs in the middle of the spectrum, and maybe even some in Class A, may cause subtle defects that we haven't detected," says Schachter. "We can't provide a yes/no answer, but we found a pattern that can predict which are riskier."

Given the degree of uncertainty, Schachter and Kohane believe their model may be of interest to drug developers and prescribing physicians, and might provide useful information to incorporate in drug labeling.

"We can now say to patients, 'This drug targets a ton of genes that are involved in developmental processes,'" says Schachter.

Or, conversely, if a young pregnant woman has a heart condition and needs to be treated, physicians may be reassured by a cardiac drug's profile, he adds. "Instead of saying, 'we don't know,' we can now say that the drug is more likely to be safe in pregnancy."

"We have here a prismatic example of the utility of a big-picture, macrobiological approach," says Kohane, director of CHIP. "By combining a comprehensive database of protein targets of drugs and a database of birth defects associated with drugs, we find a promising predictive model of drug risk for birth defects."

The study was funded by a grant from the National Institute of General Medical Sciences.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Journal Reference:

  1. Asher D. Schachter, Isaac S. Kohane. Drug target-gene signatures that predict teratogenicity are enriched for developmentally related genes. Reproductive Toxicology, 2010; DOI: 10.1016/j.reprotox.2010.11.008

Cite This Page:

Children's Hospital Boston. "Model predicts a drug's likelihood of causing birth defects." ScienceDaily. ScienceDaily, 5 January 2011. <www.sciencedaily.com/releases/2011/01/110104151144.htm>.
Children's Hospital Boston. (2011, January 5). Model predicts a drug's likelihood of causing birth defects. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/01/110104151144.htm
Children's Hospital Boston. "Model predicts a drug's likelihood of causing birth defects." ScienceDaily. www.sciencedaily.com/releases/2011/01/110104151144.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins