Science News
from research organizations

What gives frogs a face? Zoologists clarify role of FOXN3 gene in development of clawed frog

Date:
January 13, 2011
Source:
Friedrich-Schiller-Universitaet Jena
Summary:
Zoologists in Germany have analyzed the central factor for the development of morphologically distinctive features of tadpoles. The researchers were able to show that it is mostly the FOXN3 gene that influences the development of the cartilages in the oral region and the gills. These structures in particular belong to the evolutionary new developments typical of frogs.
Share:
       
FULL STORY

Specimen of the South African clawed frog (Xenopus laevis), that zoologists at Jena University are doing research on.
Credit: Jan-Peter Kasper/University Jena

Frogs are real winners -- at least from the point of view of evolutionary biology. Nearly 6,000 species are known today.

"In terms of numbers, frogs are superior to all the other amphibians, and even mammals," says Professor Dr. Lennart Olsson from the Friedrich Schiller University Jena (Germany). Professor Olsson's research group for Systematic Zoology examines these animals's special secret of success. "We are interested in how the frogs developed in such a great variety and which evolutionary new development is responsible for making frogs so particularly successful," Jennifer Schmidt from Olsson's team explains.

Their evolutionary success is literally written all over the frogs' faces: Certain forms of cartilage and bone structures in the region of the head of the tadpoles are among the frogs' "innovations." These structures only to be found in frogs appear in the oral region. They enable the tadpoles -- of the South African claw frog (Xenopus laevis) -- particularly well to chip vegetarian food from the soil and from stones or to filter it from the water.

In their latest study, which has been published in the Journal of Anatomy, together with colleagues from Ulm Jennifer Schmidt analysed the central factor for the development of these morphologically distinctive features of the tadpoles. It is well known from earlier analyses that the gene FOXN3 plays a key role in the embryonal development of the heads of claw frogs. "It is responsible for the normal development of cartilages, bones and muscles," Jennifer Schmidt explains.

In the newly published study, the 25-year-old doctoral candidate and scholar of the Konrad-Adenauer-Stiftung analyzed larvae of the claw frog after the FOXN3 gene had been turned off. Then she compared them with untreated larvae.

"Our analyses with microCT show that the larvae without an intact FOXN3 gene are developing normally up to a certain time." But then the development slows down, says Jennifer Schmidt. "On the whole these animals grow more slowly."

Most of all the cartilages, the bones and muscles don't develop properly. Deformations and loss of functions occur. However not all cartilages and muscles are affected by the turned-off gene. "We were able to show that FOXN3 most of all influences the development of the cartilages in the oral region and the gills," Professor Olsson points out. These structures in particular belong to the evolutionary new developments typical of frogs, which are missing in other amphibians.

Jennifer Schmidt would like to continue her analyses in her thesis. "We are going to compare the embryonal development of the claw frogs with those of other amphibians," the zoologist says. It would be interesting to find out to what extent the genetic control of those new developments changed in the course of the evolution.


Story Source:

The above post is reprinted from materials provided by Friedrich-Schiller-Universitaet Jena. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jennifer Schmidt, Maximilian Schuff, Lennart Olsson. A role for FoxN3 in the development of cranial cartilages and muscles in Xenopus laevis (Amphibia: Anura: Pipidae) with special emphasis on the novel rostral cartilages. Journal of Anatomy, 2011; 218 (2): 226 DOI: 10.1111/j.1469-7580.2010.01315.x

Cite This Page:

Friedrich-Schiller-Universitaet Jena. "What gives frogs a face? Zoologists clarify role of FOXN3 gene in development of clawed frog." ScienceDaily. ScienceDaily, 13 January 2011. <www.sciencedaily.com/releases/2011/01/110113101659.htm>.
Friedrich-Schiller-Universitaet Jena. (2011, January 13). What gives frogs a face? Zoologists clarify role of FOXN3 gene in development of clawed frog. ScienceDaily. Retrieved August 29, 2015 from www.sciencedaily.com/releases/2011/01/110113101659.htm
Friedrich-Schiller-Universitaet Jena. "What gives frogs a face? Zoologists clarify role of FOXN3 gene in development of clawed frog." ScienceDaily. www.sciencedaily.com/releases/2011/01/110113101659.htm (accessed August 29, 2015).

Share This Page: