Featured Research

from universities, journals, and other organizations

Loss of reflectivity in the Arctic doubles estimate of climate models

Date:
January 18, 2011
Source:
Oregon State University
Summary:
A new analysis of the Northern Hemisphere's "albedo feedback" over a 30-year period concludes that the region's loss of reflectivity due to snow and sea ice decline is more than double what state-of-the-art climate models estimate.

Islands frozen in Frobisher Bay with mountains in the distance. Nunavut Canada. The cryosphere is the collective portion of the Earth's surface where water is in solid form and includes sea ice, snow, lake and river ice, glaciers, ice sheets and frozen ground. Most of these frozen areas are highly reflective, and "bounce" sunlight back into the atmosphere, keeping the Earth cooler than it would be without the cryosphere.
Credit: iStockphoto/Ryerson Clark

A new analysis of the Northern Hemisphere's "albedo feedback" over a 30-year period concludes that the region's loss of reflectivity due to snow and sea ice decline is more than double what state-of-the-art climate models estimate.

The findings are important, researchers say, because they suggest that Arctic warming amplified by the loss of reflectivity could be even more significant than previously thought.

The study was published online this week in Nature Geoscience. It was funded primarily by the National Science Foundation, with data also culled from projects funded by NASA, the Department of Energy and others.

"The cryosphere isn't cooling the Earth as much as it did 30 years ago, and climate model simulations do not reproduce this recent effect," said Karen Shell, an Oregon State University atmospheric scientist and one of the authors of the study. "Though we don't necessarily attribute this to global warming, it is interesting to note that none of the climate models used for the 2007 International Panel on Climate Change report showed a decrease of this magnitude."

The cryosphere is the collective portion of the Earth's surface where water is in solid form and includes sea ice, snow, lake and river ice, glaciers, ice sheets and frozen ground. Most of these frozen areas are highly reflective, and "bounce" sunlight back into the atmosphere, keeping the Earth cooler than it would be without the cryosphere.

But as temperatures warm, ice and snow melts and reflectivity decreases, noted Shell, an assistant professor in OSU's College of Oceanic and Atmospheric Sciences.

"Instead of being reflected back into the atmosphere, the energy of the sun is absorbed by the Earth, which amplifies the warming," Shell said. "Scientists have known for some time that there is this amplification effect, but almost all of the climate models we examined underestimated the impact -- and they contained a pretty broad range of scenarios."

As part of the study, Shell, lead author Mark Flanner of the University of Michigan, and their colleagues compared Northern Hemisphere cryosphere changes between 1979 and 2008 in 18 different climate models to changes in actual snow, ice and reflectivity measurements of the same period. They determined that mean radiative forcing -- or the amount of energy reflected into the atmosphere -- ranged from 4.6 to 2.2 watts per meter squared.

During the 30-year study period, cryosphere cooling declined by 0.45 watts per meter squared. The authors attribute that decline equally to loss of snow and sea ice.

"Some of the decline may be natural climate variability," Shell said. "Thirty years isn't a long enough time period to attribute this entirely to 'forcing,' or anthropogenic influence. But the loss of cooling is significant. The rate of energy being absorbed by the Earth through cryosphere decline -- instead of being reflected back to the atmosphere -- is almost 30 percent of the rate of extra energy absorption due to carbon dioxide increase between pre-industrial values and today."

The "albedo" or reflectivity process is simple, scientists say, but difficult to measure on a broad scale. The reflectivity of ice and snow is obviously much greater than that of darker, unfrozen ground, or open sea water. But researchers also have discovered that variations in the snow and ice result in different albedo impacts.

For example, pools of melted water on top of sea ice can have significantly less reflectivity, which in essence may speed up the warming and possibly melting of that sea ice.

"While the current group of models underestimates these Northern Hemisphere cryosphere changes, new models will be released this year that will have better representations of snow and ice," Shell said. "This study will help climate modelers improve the new generation of models to better predict the rate of cryosphere and albedo decline in the future."


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. G. Flanner, K. M. Shell, M. Barlage, D. K. Perovich, M. A. Tschudi. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geoscience, 2011; DOI: 10.1038/ngeo1062

Cite This Page:

Oregon State University. "Loss of reflectivity in the Arctic doubles estimate of climate models." ScienceDaily. ScienceDaily, 18 January 2011. <www.sciencedaily.com/releases/2011/01/110118123519.htm>.
Oregon State University. (2011, January 18). Loss of reflectivity in the Arctic doubles estimate of climate models. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/01/110118123519.htm
Oregon State University. "Loss of reflectivity in the Arctic doubles estimate of climate models." ScienceDaily. www.sciencedaily.com/releases/2011/01/110118123519.htm (accessed October 22, 2014).

Share This



More Earth & Climate News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
White Rhino's Death In Kenya Means Just 6 Are Left

White Rhino's Death In Kenya Means Just 6 Are Left

Newsy (Oct. 20, 2014) Suni, a rare northern white rhino at Ol Pejeta Conservancy, died Friday. This, as many media have pointed out, leaves people fearing extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins