Featured Research

from universities, journals, and other organizations

Real-world graphene devices may have a bumpy ride

Date:
January 24, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
New measurements by researchers may affect the design of devices that rely on the high mobility of electrons in graphene -- they show that layering graphene on a substrate transforms its bustling speedway into steep hills and valleys that make it harder for electrons to get around.

Electronics researchers love graphene. A two-dimensional sheet of carbon one atom thick, graphene is like a superhighway for electrons, which rocket through the material with 100 times the mobility they have in silicon. But creating graphene-based devices will be challenging, say researchers at the National Institute of Standards and Technology (NIST), because new measurements show that layering graphene on a substrate transforms its bustling speedway into steep hills and valleys that make it harder for electrons to get around.

Related Articles


In a new article in Nature Physics, NIST scientists also say that graphene may be an ideal medium for probing interactions between electric conductors and insulators using a scanning tunneling microscope (STM).

According to NIST Fellow Joseph Stroscio, graphene's ideal properties are only available when it is isolated from the environment.

"To get the most benefit from graphene, we have to understand fully how graphene's properties change when put in real-world conditions, such as part of a device where it is in contact with other kinds of materials," Stroscio says.

Typical semiconductor chips are a complicated "sandwich" of alternating conducting, semiconducting and insulating layers and structures. To perform their experiment, the NIST group made their own sandwich with a single atomic sheet of graphene and another conductor separated by an insulating layer. When the bottom conductor is charged, it induces an equal and opposite charge in the graphene.

Examined under an STM, which is sensitive to the charged state of the graphene, the high electron mobility should make the graphene look like a featureless plane. But, says NIST researcher Nikolai Zhitenev, "What we found is that variations in the electrical potential of the insulating substrate are interrupting the orbits of the electrons in the graphene, creating wells where the electrons pool and reducing their mobility."

This effect is especially pronounced when the group exposes the substrate-mounted graphene to high magnetic fields. Then the electrons, already made sluggish by the substrate interactions, lack the energy to scale the mountains of resistance and settle into isolated pockets of "quantum dots," nanometer-scale regions that confine electrical charges in all directions.

It's not all bad news. Direct access to the graphene with a scanned probe also makes it possible to investigate the physics of other substrate interactions on a nanoscopic scale, something which is less possible in conventional semiconductor devices where the important transport layers are buried below the surface.

"Usually, we cannot study insulators at atomic scale," says Stroscio. "The STM works with a closed loop system that keeps a constant tunneling current by adjusting the tip-sample distance. On an insulator there is no current available, so the system will keep pushing the tip closer to the substrate until it eventually crashes into the surface. The graphene lets us get close enough to these substrate materials to study their electrical properties, but not so close that we damage the substrate and instrument."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Suyong Jung, Gregory M. Rutter, Nikolai N. Klimov, David B. Newell, Irene Calizo, Angela R. Hight-Walker, Nikolai B. Zhitenev, Joseph A. Stroscio. Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nature Physics, 2011; DOI: 10.1038/nphys1866

Cite This Page:

National Institute of Standards and Technology (NIST). "Real-world graphene devices may have a bumpy ride." ScienceDaily. ScienceDaily, 24 January 2011. <www.sciencedaily.com/releases/2011/01/110120111041.htm>.
National Institute of Standards and Technology (NIST). (2011, January 24). Real-world graphene devices may have a bumpy ride. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/01/110120111041.htm
National Institute of Standards and Technology (NIST). "Real-world graphene devices may have a bumpy ride." ScienceDaily. www.sciencedaily.com/releases/2011/01/110120111041.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins