Featured Research

from universities, journals, and other organizations

Scientists use quantum mechanics to show that glass should melt near absolute zero

Date:
February 4, 2011
Source:
American Friends of Tel Aviv University
Summary:
By cooling glass to a temperature near absolute zero (-459.67 degrees Fahrenheit), a professor is demonstrating that, at the quantum level, glass exhibits a very different behavior than might be expected from traditional physics -- in fact, it melts.

Glass jar. Researchers have determined that it's possible to melt glass -- not by heating it, but by cooling it to a temperature near absolute zero.
Credit: iStockphoto

Quantum mechanics, developed in the 1920s, has had an enormous impact in explaining how matter works. The elementary particles that make up different forms of matter -- such as electrons, protons, neutrons and photons -- are well understood within the model quantum physics provides. Even now, some 90 years later, new scientific principles in quantum physics are being described. The most recent gives the world a glimpse into the seemingly impossible.

Prof. Eran Rabani of Tel Aviv University's School of Chemistry and his colleagues at Columbia University have discovered a new quantum mechanical effect with glass-forming liquids. They've determined that it's possible to melt glass -- not by heating it, but by cooling it to a temperature near absolute zero.

This new basic science research, to be published in Nature Physics, has limited practical application so far, says Prof. Rabani. But knowing why materials behave as they do paves the way for breakthroughs of the future. "The interesting story here," says Prof. Rabani, "is that by quantum effect, we can melt glass by cooling it. Normally, we melt glasses with heat."

Turning the thermometer upside-down

Classical physics allowed researchers to be certain about the qualities of physical objects. But at the atomic/molecular level, as a result of the duality principle which describes small objects as waves, it's impossible to determine exact molecular position and speed at any given moment -- a fact known as the "Heisenberg Principle." Based on this principle, Prof. Rabani and his colleagues were able to demonstrate their surprising natural phenomenon with glass.

Many different materials on earth, like the silica used in windows, can become a glass -- at least in theory -- if they are cooled fast enough. But the new research by Prof. Rabani and his colleagues demonstrates that under very special conditions, a few degrees above absolute zero (−459.67° Fahrenheit), a glass might melt.

It all has to do with how molecules in materials are ordered, Prof. Rabani explains. At some point in the cooling phase, a material can become glass and then liquid if the right conditions exist.

"We hope that future laboratory experiments will prove our predictions," he says, looking forward to this new basic science paving the way for continued research.

Classical glass

The research was inspired by Nobel Prize winner Philip W. Anderson, who wrote that the understanding of classical glasses was one of the biggest unsolved problems in condensed matter physics. After the challenge was presented, research teams around the world rose to it.

Until now, structural quantum glasses had never been explored -- that is, what happens when you mix the unique properties in glass and add quantum effects. Prof. Rabani was challenged to ask: if we looked at the quantum level, would we still see the hallmarks of a classical glass?

What the researchers unearthed is a new and unique hallmark, showing that quantum glasses have a unique signature. Many materials he says can form a glass if they're cooled fast enough. Even though their theory is not practical for daily use: few individuals own freezers that dip down nearly 500 degrees below zero.

Prof. Rabani is currently on sabbatical at the University of California, Berkeley, as a Miller Visiting Professor.


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thomas E. Markland, Joseph A. Morrone, Bruce J. Berne, Kunimasa Miyazaki, Eran Rabani, David R. Reichman. Quantum fluctuations can promote or inhibit glass formation. Nature Physics, 2011; 7 (2): 134 DOI: 10.1038/nphys1865

Cite This Page:

American Friends of Tel Aviv University. "Scientists use quantum mechanics to show that glass should melt near absolute zero." ScienceDaily. ScienceDaily, 4 February 2011. <www.sciencedaily.com/releases/2011/02/110202102748.htm>.
American Friends of Tel Aviv University. (2011, February 4). Scientists use quantum mechanics to show that glass should melt near absolute zero. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2011/02/110202102748.htm
American Friends of Tel Aviv University. "Scientists use quantum mechanics to show that glass should melt near absolute zero." ScienceDaily. www.sciencedaily.com/releases/2011/02/110202102748.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins