Featured Research

from universities, journals, and other organizations

Primitive vertebrates with an adaptive immune system

Date:
February 3, 2011
Source:
Max-Planck-Gesellschaft
Summary:
A key organ found in our adaptive immune system is more common than previously assumed: Researchers demonstrate the presence of thymus-like structures in the primitive lamprey.

Ancient vertebrate with an elaborate immune defence: the lamprey.
Credit: MPI of Immunobiology and Epigenetics

A key organ found in our adaptive immune system is more common than previously assumed: Max Planck researchers demonstrate the presence of thymus-like structures in the primitive lamprey.

Primitive vertebrates with an adaptive immune system A key organ found in our adaptive immune system are more common than previously assumed: Max Planck researchers have demonstrated the presence of thymus-like structures in the primitive lamprey. The adaptive immune system is one of evolution's greatest inventions: our bodies react to pathogens by producing highly specialised defence cells -- the T lymphocytes which mature in the thymus -- and antibodies that are capable of recognising the intruders, even years after the original exposure. Whether this ingenious defence system and the organs necessary for its functioning are an exclusive feature of higher vertebrates is a question that has preoccupied scientists for 150 years. A research group led by Thomas Boehm from the Max Planck Institute of Immunobiology and Epigenetics in Freiburg working in cooperation with American scientists has succeeded in providing a conclusive answer to this question: the scientists have discovered thymus-like tissue in lampreys, arguably the most primitive living vertebrates. Therefore, they too possess the central structure of specific immune defence.

The question as to when and how the thymus originated is of interest not only for evolutionary biologists, it is also important from a medical point of view. "An in-depth understanding of the development and functioning of this organ in different organisms could ultimately contribute to a better understanding of immune disorders in humans," explains Thomas Boehm, who has been studying the immune systems of various organisms for many years. In today's higher vertebrates, the T lymphocytes or T cells mature into powerful defence cells in the thymus gland, which in humans is located above the heart. As soon as they leave this organ, the T lymphocytes can identify molecules that are foreign to the organism and launch a targeted attack on bacterial or viral pathogens. Specific receptors that bind to the intruders (antigens) and destroy them are situated on the surface of the T cells. Along with the B lymphocytes, which are specialised in the production of matching antibodies and can also identify foreign pathogens, the T cells form an adaptive defence system that has an excellent memory of previous exposure.

Immunologists and evolutionary biologists long believed that this adaptive immune system was exclusive to the higher vertebrates. Until a few years ago it was not thought that primitive vertebrates like the lamprey -- a fish-like living fossil which evolved around 500 million years ago -- had the capacity to form antibodies. However, in 2004, American scientists succeeded in demonstrating that the lamprey's reaction to invasion by pathogens was not limited to a non-specific immune response. They found that the lamprey's lymphocytes form antigen receptors, proteins that display similar variability to the antibodies of the higher vertebrates. Moreover, these variable lymphocyte receptors also appear to arise in two forms: the lamprey's T-like lymphocytes form type A receptors on their surface and their B-like cells produce type B receptors.

"The discovery of the T-cell-like lymphocytes re-ignited the old question as to whether primitive vertebrates like the lamprey may even have thymus-like tissue." Despite extensive efforts, scientists had previously failed to demonstrate this. Boehm and his team used the very latest genetic methods to carry out a new search for this tissue. They found what they were looking for. They discovered thymus-like structures in the gill area of the lamprey that they have termed thymoids: this was the only location where the genes involved in the production of the variable lymphocyte receptors were active. "We now assume that the lamprey has a dual immune defence system similar to that of humans," says Boehm. While the lamprey's "T-cells" mature in the thymoid, the "B cells" appear to develop in a structure equivalent to bone marrow.

The discovery of this thymus-like tissue in the lamprey represents an important advance in this field of research. "It may enable us to fully understand the structure and design of adaptive immune systems for the first time," explains Boehm. The lamprey clearly developed a different but similarly effective immune defence system at the same time as the higher vertebrates about 500 million years ago. Therefore, the features that are common to the two systems should constitute the indispensable basic principles of the immune system. "However, from sharks to humans, the immune system displays a similar degree of complexity," explains Boehm; "at the moment we are unable to see the wood for the trees." Thus, the scientists also hope to gain new insights into malfunctions of the immune response which arise, for example, in the case of autoimmune diseases. The next step, however, involves gaining a better understanding of the genetic mechanisms at work in the immune defence system of the primitive lamprey.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Baubak Bajoghli, Peng Guo, Narges Aghaallaei, Masayuki Hirano, Christine Strohmeier, Nathanael McCurley, Dale E. Bockman, Michael Schorpp, Max D. Cooper, Thomas Boehm. A thymus candidate in lampreys. Nature, 2011; 470 (7332): 90 DOI: 10.1038/nature09655

Cite This Page:

Max-Planck-Gesellschaft. "Primitive vertebrates with an adaptive immune system." ScienceDaily. ScienceDaily, 3 February 2011. <www.sciencedaily.com/releases/2011/02/110203081447.htm>.
Max-Planck-Gesellschaft. (2011, February 3). Primitive vertebrates with an adaptive immune system. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2011/02/110203081447.htm
Max-Planck-Gesellschaft. "Primitive vertebrates with an adaptive immune system." ScienceDaily. www.sciencedaily.com/releases/2011/02/110203081447.htm (accessed August 20, 2014).

Share This




More Fossils & Ruins News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Disquieting Times for Malaysia's 'fish Listeners'

Disquieting Times for Malaysia's 'fish Listeners'

AFP (Aug. 19, 2014) Malaysia's last "fish listeners" -- practitioners of a dying local art of listening underwater to locate their quarry -- try to keep the ancient technique alive in the face of industrial trawling and the depletion of stocks. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
Mother And Son Find Woolly Mammoth Tusks 22 Years Apart

Mother And Son Find Woolly Mammoth Tusks 22 Years Apart

Newsy (Aug. 15, 2014) A mother and son in Alaska uncovered woolly mammoth tusks in the same river more than two decades apart. Video provided by Newsy
Powered by NewsLook.com
Fossils Reveal Ancient Flying Reptile With 'Butterfly Head'

Fossils Reveal Ancient Flying Reptile With 'Butterfly Head'

Newsy (Aug. 14, 2014) Newly found fossils reveal a previously unknown species of flying reptile with a really weird head, which some say looks like a butterfly. Video provided by Newsy
Powered by NewsLook.com
Clearing WWII's Explosive Legacy in the Pacific

Clearing WWII's Explosive Legacy in the Pacific

AFP (Aug. 11, 2014) The hulks of tanks can still be found rusting in the jungles of Palau, but the fierce fighting that scarred the Pacific island nation in WWII has left a more dangerous legacy - unexploded bombs that pose a constant risk to locals. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins