Featured Research

from universities, journals, and other organizations

Primitive vertebrates with an adaptive immune system

Date:
February 3, 2011
Source:
Max-Planck-Gesellschaft
Summary:
A key organ found in our adaptive immune system is more common than previously assumed: Researchers demonstrate the presence of thymus-like structures in the primitive lamprey.

Ancient vertebrate with an elaborate immune defence: the lamprey.
Credit: MPI of Immunobiology and Epigenetics

A key organ found in our adaptive immune system is more common than previously assumed: Max Planck researchers demonstrate the presence of thymus-like structures in the primitive lamprey.

Primitive vertebrates with an adaptive immune system A key organ found in our adaptive immune system are more common than previously assumed: Max Planck researchers have demonstrated the presence of thymus-like structures in the primitive lamprey. The adaptive immune system is one of evolution's greatest inventions: our bodies react to pathogens by producing highly specialised defence cells -- the T lymphocytes which mature in the thymus -- and antibodies that are capable of recognising the intruders, even years after the original exposure. Whether this ingenious defence system and the organs necessary for its functioning are an exclusive feature of higher vertebrates is a question that has preoccupied scientists for 150 years. A research group led by Thomas Boehm from the Max Planck Institute of Immunobiology and Epigenetics in Freiburg working in cooperation with American scientists has succeeded in providing a conclusive answer to this question: the scientists have discovered thymus-like tissue in lampreys, arguably the most primitive living vertebrates. Therefore, they too possess the central structure of specific immune defence.

The question as to when and how the thymus originated is of interest not only for evolutionary biologists, it is also important from a medical point of view. "An in-depth understanding of the development and functioning of this organ in different organisms could ultimately contribute to a better understanding of immune disorders in humans," explains Thomas Boehm, who has been studying the immune systems of various organisms for many years. In today's higher vertebrates, the T lymphocytes or T cells mature into powerful defence cells in the thymus gland, which in humans is located above the heart. As soon as they leave this organ, the T lymphocytes can identify molecules that are foreign to the organism and launch a targeted attack on bacterial or viral pathogens. Specific receptors that bind to the intruders (antigens) and destroy them are situated on the surface of the T cells. Along with the B lymphocytes, which are specialised in the production of matching antibodies and can also identify foreign pathogens, the T cells form an adaptive defence system that has an excellent memory of previous exposure.

Immunologists and evolutionary biologists long believed that this adaptive immune system was exclusive to the higher vertebrates. Until a few years ago it was not thought that primitive vertebrates like the lamprey -- a fish-like living fossil which evolved around 500 million years ago -- had the capacity to form antibodies. However, in 2004, American scientists succeeded in demonstrating that the lamprey's reaction to invasion by pathogens was not limited to a non-specific immune response. They found that the lamprey's lymphocytes form antigen receptors, proteins that display similar variability to the antibodies of the higher vertebrates. Moreover, these variable lymphocyte receptors also appear to arise in two forms: the lamprey's T-like lymphocytes form type A receptors on their surface and their B-like cells produce type B receptors.

"The discovery of the T-cell-like lymphocytes re-ignited the old question as to whether primitive vertebrates like the lamprey may even have thymus-like tissue." Despite extensive efforts, scientists had previously failed to demonstrate this. Boehm and his team used the very latest genetic methods to carry out a new search for this tissue. They found what they were looking for. They discovered thymus-like structures in the gill area of the lamprey that they have termed thymoids: this was the only location where the genes involved in the production of the variable lymphocyte receptors were active. "We now assume that the lamprey has a dual immune defence system similar to that of humans," says Boehm. While the lamprey's "T-cells" mature in the thymoid, the "B cells" appear to develop in a structure equivalent to bone marrow.

The discovery of this thymus-like tissue in the lamprey represents an important advance in this field of research. "It may enable us to fully understand the structure and design of adaptive immune systems for the first time," explains Boehm. The lamprey clearly developed a different but similarly effective immune defence system at the same time as the higher vertebrates about 500 million years ago. Therefore, the features that are common to the two systems should constitute the indispensable basic principles of the immune system. "However, from sharks to humans, the immune system displays a similar degree of complexity," explains Boehm; "at the moment we are unable to see the wood for the trees." Thus, the scientists also hope to gain new insights into malfunctions of the immune response which arise, for example, in the case of autoimmune diseases. The next step, however, involves gaining a better understanding of the genetic mechanisms at work in the immune defence system of the primitive lamprey.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Baubak Bajoghli, Peng Guo, Narges Aghaallaei, Masayuki Hirano, Christine Strohmeier, Nathanael McCurley, Dale E. Bockman, Michael Schorpp, Max D. Cooper, Thomas Boehm. A thymus candidate in lampreys. Nature, 2011; 470 (7332): 90 DOI: 10.1038/nature09655

Cite This Page:

Max-Planck-Gesellschaft. "Primitive vertebrates with an adaptive immune system." ScienceDaily. ScienceDaily, 3 February 2011. <www.sciencedaily.com/releases/2011/02/110203081447.htm>.
Max-Planck-Gesellschaft. (2011, February 3). Primitive vertebrates with an adaptive immune system. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2011/02/110203081447.htm
Max-Planck-Gesellschaft. "Primitive vertebrates with an adaptive immune system." ScienceDaily. www.sciencedaily.com/releases/2011/02/110203081447.htm (accessed September 17, 2014).

Share This



More Fossils & Ruins News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) — Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Museum Traces Fragments of Star-Spangled Banner

Museum Traces Fragments of Star-Spangled Banner

AP (Sep. 12, 2014) — As the Star-Spangled Banner celebrates its bicentennial, Smithsonian curators are still uncovering fragments of the original flag that inspired Francis Scott Key's poem. (Sept. 12) Video provided by AP
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com
Meet Spinosaurus, the First-Known Water Dinosaur

Meet Spinosaurus, the First-Known Water Dinosaur

AFP (Sep. 11, 2014) — Spinosaurus aegyptiacus was adapted for both land and water, and an exhibit featuring a life-sized model, based on new fossils unearthed in eastern Morocco, opens at the National Geographic Museum in Washington on Friday. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins