Featured Research

from universities, journals, and other organizations

Next large central US earthquake may not be along New Madrid fault lines

Date:
February 9, 2011
Source:
University of Missouri-Columbia
Summary:
This December marks the bicentennial of the New Madrid earthquakes of 1811-12, which are the biggest earthquakes known to have occurred in the central US. Now, based on the earthquake record in China, a researcher says that mid-continent earthquakes tend to move among fault systems, so the next big earthquake in the central US may actually occur someplace else other than along the New Madrid faults.

Liu on the site of May 2008 Wenchuan earthquake in the Sichuan province of China, where more than 90,000 people died.
Credit: Image courtesy of University of Missouri-Columbia

This December marks the bicentennial of the New Madrid earthquakes of 1811-12, which are the biggest earthquakes known to have occurred in the central U.S.

Now, based on the earthquake record in China, a University of Missouri researcher says that mid-continent earthquakes tend to move among fault systems, so the next big earthquake in the central U.S. may actually occur someplace else other than along the New Madrid faults.

Mian Liu, professor of geological sciences in the College of Arts and Science at MU, examined records from China, where earthquakes have been recorded and described for the past 2,000 years. Surprisingly, he found that during this time period big earthquakes have never occurred twice in the same place.

"In North China, where large earthquakes occur relatively frequently, not a single one repeated on the same fault segment in the past two thousand years," Liu said. "So we need to look at the 'big picture' of interacting faults, rather than focusing only on the faults where large earthquakes occurred in the recent past."

Mid-continent earthquakes, such as the ones that occurred along the New Madrid faults, occur on a complicated system of interacting faults spread throughout a large region. A large earthquake on one fault can increase the stress on other faults, making some of them more likely to have a major earthquake. The major faults may stay dormant for thousands of years and then wake up to have a short period of activity.

Along with co-authors Seth Stein, a professor of earth and planetary sciences at Northwestern University, and Hui Wang, a Chinese Earthquake Administration researcher, Liu believes this discovery will provide valuable information about the patterns of earthquakes in the central and eastern United States, northwestern Europe, and Australia. The results have been published in the journal Lithosphere.

"The New Madrid faults in the central U.S., for example, had three to four large events during 1811-12, and perhaps a few more in the past thousand years. This led scientists to believe that more were on the way," Stein said. "However, high-precision Global Positioning System (GPS) measurements in the past two decades have found no significant strain in the New Madrid area. The China results imply that the major earthquakes at New Madrid may be ending, as the pressure will eventually shift to another fault."

While this study shows that mid-continent earthquakes seem to be more random than previously thought, the researchers believe it actually helps them better understand these seismic events.

"The rates of earthquake energy released on the major fault zones in North China are complementary," Wang said. "Increasing seismic energy release on one fault zone was accompanied by decreasing energy on the others. This means that the fault zones are coupled mechanically."

Studying fault coupling with GPS measurements, earthquake history, and computer simulation will allow the scientists to better understand the mysterious mid-continent earthquakes.

"What we've discovered about mid-continent earthquakes won't make forecasting them any easier, but it should help," Liu said.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Liu, S. Stein, H. Wang. 2000 years of migrating earthquakes in North China: How earthquakes in midcontinents differ from those at plate boundaries. Lithosphere, 2011; DOI: 10.1130/L129.1

Cite This Page:

University of Missouri-Columbia. "Next large central US earthquake may not be along New Madrid fault lines." ScienceDaily. ScienceDaily, 9 February 2011. <www.sciencedaily.com/releases/2011/02/110208121343.htm>.
University of Missouri-Columbia. (2011, February 9). Next large central US earthquake may not be along New Madrid fault lines. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2011/02/110208121343.htm
University of Missouri-Columbia. "Next large central US earthquake may not be along New Madrid fault lines." ScienceDaily. www.sciencedaily.com/releases/2011/02/110208121343.htm (accessed April 25, 2014).

Share This



More Earth & Climate News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
New Pictures of Ship That Sank in 1888

New Pictures of Ship That Sank in 1888

AP (Apr. 24, 2014) Federal researchers have released new images of the City of Chester, a steamship that sank in San Francisco Bay in 1888. Researchers recently found the shipwreck while mapping shipping routes. (April 24) Video provided by AP
Powered by NewsLook.com
Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins